scholarly journals IEC 61850 modeling of an AGC dispatching scheme for mitigation of short-term power flow variations

2021 ◽  
Author(s):  
Taha Selim Ustun ◽  
S.M. Suhail Hussain ◽  
Dai Orihara ◽  
Daisuke Iioka
Keyword(s):  
2020 ◽  
Author(s):  
Paul Cuffe

<div>As submitted to IEEE EnergyCon 2020<br></div><div><br></div><div><br></div><div>Abstract:<br></div><div><br></div><div>This paper proposes new tools for predicting and visualising the plausible near term shifts in branch loading that may arise due to output fluctuations from renewable generators. These tools are proposed to enhance situational awareness for control room operators, by providing early warnings of where bottlenecks may manifest in a transmission system. For predicting plausible branch loading shifts, a linear optimal power flow formulation is presented which uses a novel objective function to characterise the maximum loading a branch could be exposed to in the short term. This analysis therefore identifies which branches could become overloaded due to shifts in output from volatile generators. Equivalently, these branches can be seen as congestion bottlenecks which may cause curtailment of renewable generation. To allow the system operator to maintain awareness of such potentialities, these congestable branches are highlighted on a system diagram which is drawn to explicitly portray the electrical distance between components in the network.</div><br>


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2493
Author(s):  
Taha Selim Ustun ◽  
S. M. Suhail Hussain ◽  
Mazheruddin H. Syed ◽  
Paulius Dambrauskas

As the number of EVs increases, their impact on electrical systems will be substantial. Novel management schemes are needed to manage the electrical load they require when charging. Literature is rich with different techniques to manage and control this effect on the grid by controlling and optimizing power flow. Although these solutions heavily rely on communication lines, they mostly treat communication as a black box. It is important to develop communication solutions that can integrate EVs, charging stations (CSs), and the rest of the grid in an interoperable way. A standard approach would be indispensable as there are different EV models manufactured by different companies. The IEC 61850 standard is a strong tool used for developing communication models for different smart grid components. However, it does not have the necessary models for implementing smart EV management schemes that coordinate between EVs and CSs. In this paper, these missing links are addressed through the development of corresponding models and message mapping. A hardware-in-the-loop test is performed to validate the communication models and cross-platform operation. Then, a co-simulation environment is used to perform a combined study of communication and the power system components. The developed communication model helps integrate the EVs to a centralized, coordinated voltage control scheme. These models can be used to run extensive impact studies where different domains of smart grids need to be considered simultaneously. The main contribution of this paper is the development of smartgrid communication solutions for enabling successful information exchanges.


Sign in / Sign up

Export Citation Format

Share Document