High throughput phenotyping of canopy water mass and canopy temperature in well-watered and drought stressed tropical maize hybrids in the vegetative stage

2011 ◽  
Vol 35 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Loïc Winterhalter ◽  
Bodo Mistele ◽  
Sansern Jampatong ◽  
Urs Schmidhalter
2020 ◽  
Author(s):  
Thierry Balliau ◽  
Harold Duruflé ◽  
Nicolas Blanchet ◽  
Mélisande Blein-Nicolas ◽  
Nicolas B. Langlade ◽  
...  

AbstractThis article describes how the proteomic data were produced on sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybridsWater deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. Here, we provide proteomic data from sunflower leaves corresponding to the identification of 3062 proteins and the quantification of 1211 of them in these 24 genotypes grown in two watering conditions. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the molecular basis of heterosis.


2016 ◽  
Vol 6 (9) ◽  
pp. 2799-2808 ◽  
Author(s):  
Jessica Rutkoski ◽  
Jesse Poland ◽  
Suchismita Mondal ◽  
Enrique Autrique ◽  
Lorena González Pérez ◽  
...  

2011 ◽  
Vol 79 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Giuseppe Romano ◽  
Shamaila Zia ◽  
Wolfram Spreer ◽  
Ciro Sanchez ◽  
Jill Cairns ◽  
...  

OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 12
Author(s):  
Thierry Balliau ◽  
Harold Duruflé ◽  
Nicolas Blanchet ◽  
Mélisande Blein-Nicolas ◽  
Nicolas B. Langlade ◽  
...  

This article describes a proteomic data set produced from sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybrids. Water deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. We present here the identification of 3062 proteins and the quantification of 1211 of them in the leaves of the 24 genotypes grown under two watering conditions. These data allow the study of both the effects of genetic variations and watering conditions. They constitute a valuable resource for the community to study adaptation of crops to drought and the molecular basis of heterosis.


2011 ◽  
Author(s):  
E. Kyzar ◽  
S. Gaikwad ◽  
M. Pham ◽  
J. Green ◽  
A. Roth ◽  
...  

2021 ◽  
Author(s):  
Peng Song ◽  
Jinglu Wang ◽  
Xinyu Guo ◽  
Wanneng Yang ◽  
Chunjiang Zhao

2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


Author(s):  
Marcus Vinicius Vieira Borges ◽  
Janielle de Oliveira Garcia ◽  
Tays Silva Batista ◽  
Alexsandra Nogueira Martins Silva ◽  
Fabio Henrique Rojo Baio ◽  
...  

AbstractIn forest modeling to estimate the volume of wood, artificial intelligence has been shown to be quite efficient, especially using artificial neural networks (ANNs). Here we tested whether diameter at breast height (DBH) and the total plant height (Ht) of eucalyptus can be predicted at the stand level using spectral bands measured by an unmanned aerial vehicle (UAV) multispectral sensor and vegetation indices. To do so, using the data obtained by the UAV as input variables, we tested different configurations (number of hidden layers and number of neurons in each layer) of ANNs for predicting DBH and Ht at stand level for different Eucalyptus species. The experimental design was randomized blocks with four replicates, with 20 trees in each experimental plot. The treatments comprised five Eucalyptus species (E. camaldulensis, E. uroplylla, E. saligna, E. grandis, and E. urograndis) and Corymbria citriodora. DBH and Ht for each plot at the stand level were measured seven times in separate overflights by the UAV, so that the multispectral sensor could obtain spectral bands to calculate vegetation indices (VIs). ANNs were then constructed using spectral bands and VIs as input layers, in addition to the categorical variable (species), to predict DBH and Ht at the stand level simultaneously. This report represents one of the first applications of high-throughput phenotyping for plant size traits in Eucalyptus species. In general, ANNs containing three hidden layers gave better statistical performance (higher estimated r, lower estimated root mean squared error–RMSE) due to their greater capacity for self-learning. Among these ANNs, the best contained eight neurons in the first layer, seven in the second, and five in the third (8 − 7 − 5). The results reported here reveal the potential of using the generated models to perform accurate forest inventories based on spectral bands and VIs obtained with a UAV multispectral sensor and ANNs, reducing labor and time.


Sign in / Sign up

Export Citation Format

Share Document