OCL
Latest Publications


TOTAL DOCUMENTS

542
(FIVE YEARS 181)

H-INDEX

15
(FIVE YEARS 4)

Published By Edp Sciences

2257-6614, 2257-6614

OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 1
Author(s):  
Camille Dumont

Therapeutic peptides can treat a wide variety of diseases with selective and potent action. Their oral bioavailability is strongly limited by an important proteolytic activity in the intestinal lumen and poor permeation across the intestinal border. We have evaluated the capacity of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) to overcome both oral bioavailability limiting aspects, using leuprolide (LEU) as model peptide. Lipidization of LEU by formation of a hydrophobic ion pair (HIP) with sodium docusate enables a significant increase of peptide encapsulation efficiency in both SLN and NLC. The nanocarriers, obtained by high-pressure homogenization, measured 120 nm and were platelet shaped. Regarding the protective effect towards proteolytic degradation, only NLC maintained LEU integrity in presence of trypsin. Intestinal transport, evaluated on Caco-2 (enterocyte-like model) and Caco-2/HT29-MTX (mucin-secreting model) monolayers, showed nanocarriers internalization by enterocytes but no improvement of LEU permeability. Indeed, the combination of nanoparticles platelet-shape with the poor stability of the HIP in the transport medium induces a high burst release of the peptide, limiting nanoparticles capacity to transport LEU across the intestinal border. Stability of peptide lipidization needs to be improved to withstand biorelevant medium to benefit from the advantages of encapsulation in solid lipid nanocarriers and consequently improve their oral bioavailability.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 6
Author(s):  
Patrick Carré

In a context where the search for naturalness, the need to reduce the carbon footprint and the development of a decentralized crushing sector are intensifying, mechanical extraction is a technology that is regaining major importance for the industry. The performance of this technique remains far below what is desirable, while the understanding of the main phenomena involved in screw presses remains insufficient. This article, after a brief presentation of the state of the art of this discipline, presents a new model centered on the notions of pressure generation and plasticity. According to this approach, plasticity can account for parameters such as the water and oil content of oilseeds, their temperature, and their possible dehulling. Plasticity in turn would explain both the compressibility of the cake and its ability to resist the thrust of the screws, and consequently to generate pressure or to creep or flow backward depending on the geometry of the screw and the cage. The model must also incorporate the notions of compression velocity, friction, and the complexity of the interactions between these parameters and the impact of the succession of screw segments and cone rings. It has been built on observation and experience and gives an understanding of the need to work simultaneously on the conditioning and geometry of the presses to achieve improved performance in terms of energy, efficiency, and reduction of the temperatures experienced by the proteins and oils


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 5
Author(s):  
Meriem Tekaya ◽  
Mguidich Belhaj Amel ◽  
Beligh Mechri ◽  
Mohamed Ayadi ◽  
Manel Ben Slamia Aouina ◽  
...  

Blends of olive oils obtained from four cultivars (Olea europaea L. cv. Chemlali, Chetoui, Oueslati and Koroneiki) were produced by two different methods of blending: processing fruit mixtures or mixing monovarietal oils, using the same proportions of selected cultivars. The obtained blends were biochemically characterized to evaluate quality, and the two methods were compared. The results indicated that the most successful formulations are mainly F8 (60% Chemlali × 20% Oueslati × 20% Koroneiki) characterized by the highest contents of phenols and an elevated oxidative stability, and F5 (50% Chemlali × 50% Koroneiki) containing the highest MUFA level and the highest oxidative stability. The effect of the blending process on pigments and volatiles cannot be easily regulated, unlike phenols, fatty acid composition and OS, all of which positively correlated to the fruit mass ratio in the blend. Results suggest that processing fruit mixtures of different cultivars resulted in a better oil quality than that of oils obtained by the common oil blending method. This blending procedure offers a possibility to modulate the contents of antioxidants, fatty acids and volatile compounds in virgin olive oil, and therefore, its quality and sensorial characteristics.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 4
Author(s):  
Cécile Le Gall ◽  
Vincent Lecomte ◽  
Dominique Wagner

The development of organic agriculture in France was steady since 2010 but became stronger since 2014. Like other crops, the cultivated areas of organic soybean and sunflower doubled from 2014 to 2018. With a view to better characterize cultural practices in organic production, Terres Inovia and ITAB (in collaboration with Agence Bio) conducted in 2016 and 2017 a national farmers’ survey. These surveys reveal that sunflower was mainly cultivated over the same types of soil than in conventional production but were integrated in more diversified rotations. The main differences between organic and conventional systems concern sowing date and weed control. Organic sunflower was sown very lately compared to conventional one, which impacted the yield severely. Weed were controlled through ploughing, mechanical weeding and crop rotation and weed control was judged as satisfying by a major part of producers. Concerning soybean, a great difference is the use of irrigation which is almost systematic in conventional but concerned only 50% of cultivated area in organic production. Contrary to sunflower, soybean is integrated in short crop rotation, particularly when it was irrigated. This demonstrated the high profitability of soybean in organic systems. Like for sunflower, weed control done through ploughing, mechanical weeding, and crop rotation and weed control was also judged satisfying; nevertheless, criteria on harvest impurities are more severe and to respect them, organic farmers also use hand weeding in complement. These surveys will be reconducted over the years to be able to follow the changes of cultural practices over the years.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 2
Author(s):  
Elina Hishamuddin ◽  
Mei Huey Saw

Incorporation of oils from non-conventional sources into palm olein through the blending process generates a sustainable source of novel oleins with improved physicochemical and functional properties. The objective of this study was to evaluate the effects of blending winged bean (Psophocarpus tetragonolobus) seed oil (WBSO) and palm olein (POo) on the physicochemical properties of the blends. Blends of WBSO (25, 50 and 75% w/w) with POo were prepared and changes in fatty acid (FA) and triacylglycerol (TAG) compositions, iodine value (IV), cloud point and thermal behaviour were studied. Reductions in palmitic (C16:0) and oleic (C18:1) acids with concomitant increases in linoleic (C18:2) and behenic (C22:0) acids were observed as the amount of WBSO increased in the blends. Blending WBSO and POo at 75:25 increased the unsaturated FA content from 56% in palm olein to 64% in the blend, producing the highest IV of 70.5 g I2/100g. At higher WBSO ratios, triunsaturated and diunsaturated TAG species within the blends increased while disaturated TAG species decreased. The lowest cloud point (8.8 °C) was obtained in the oil blend containing 50% WBSO, while the cloud point further increased with increasing amount of WBSO in the blends. This was possibly attributed to increased trisaturated TAG with very long-chained saturated FA (C20 to C24) inherently present in WBSO within the blends. Thermal behaviour analysis by differential scanning calorimetry of the oil blends showed higher onset temperatures for crystallisation with increasing proportions of WBSO in POo, with melting thermograms correspondingly showing decreasing onset melting temperatures. These findings showed that blending WBSO with POo enhanced the physicochemical characteristics of the final oil blends, resulting in higher unsaturation levels and improved cloudiness resistance.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 3
Author(s):  
Mohammad Mahdi Taghvaei ◽  
Habibollah Samizadeh Lahiji ◽  
Mohammad Mohsenzadeh Golfazani

Rapeseed is the third-largest source of plant oil and one of the essential oil plants worldwide. Cold stress is one of the critical factors that affect plant yield. Therefore, improving cold stress tolerance is necessary for yield increase. The present study investigated BnCAT1 and BnCSD1 genes’ expression behavior in a tolerant and sensitive cultivar under cold stress (4 °C). Besides, protein-protein interaction networks of CATs and CSDs enzymes, and their association with other antioxidant enzymes were analyzed. Moreover, the microRNAs targeting BnCAT1 and BnCSD1 genes were predicted. This study indicated many direct and indirect interactions and the association between the components of the plant antioxidant system. However, not only did the CATs and CSDs enzymes have a relationship with each other, but they also interacted directly with ascorbate peroxidase and glutathione reductase enzymes. Also, 23 and 35 effective microRNAs were predicted for BnCAT1 and BnCSD1 genes, respectively. The gene expression results indicated an elevated expression of BnCAT1 and BnCSD1 in both tolerant and sensitive cultivars. However, this increase was more noticeable in the tolerant cultivar. Thus, the BnCSD1 gene had the highest expression in the early hour of cold stress, especially in the 12th h, and the BnCAT1 gene showed the highest expression in the 48th h. This result may indicate a functional relationship between these enzymes.


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 2
Author(s):  
Gilles Vaitilingom ◽  
Zéphirin Mouloungui ◽  
Anthony Benoist ◽  
François Broust ◽  
Tizane Daho ◽  
...  

Dans le monde, le pétrole assure 96 % des besoins des transports, lesquels mobilisent 65 % du pétrole consommé et participent à hauteur de 20 % aux émissions de CO2. Afin de réduire la consommation de ressources fossiles, une des alternatives est notamment l’utilisation de « biocarburants ». Ces biocarburants sont classés en trois générations successives. Les biocarburants de première génération sont issus des parties alimentaires de plantes de grande culture : le bioéthanol et le biodiesel. Les biocarburants dits « avancés » de seconde génération sont issus de ressources lignocellulosiques (bois, résidus agricoles...) valorisées soit en bioéthanol soit en hydrocarbures de synthèse. Une troisième génération repose sur la culture de micro-algues productrices d’acides gras transformés en biodiesel. Les biodiesels de première génération, tout comme ceux de deuxième et troisième générations, sont sujets à certaines critiques notamment le CAS (changement d’affectation des sols) et la compétition alimentaire/énergétique. L’objectif de ce travail est d’examiner l’intérêt de deux filières prometteuses. Les biodiesels basés sur des cultures dédiées conduisent à des impacts environnementaux plus réduits mais jouent un rôle dans la problématique des CAS. Alors que celles basées sur les résidus n’y entrent pas et montrent des niveaux de réduction des émissions de gaz à effet de serre entre 83 et 90 % contre 60 à 80 % pour un biodiesel classique par rapport à un carburant diesel fossile. Les esters butyliques d’huiles alimentaires usagées et de graisses animales s’affichent comme des biodiesels « plus verts » et représentent une opportunité pour les biocarburants de deuxième génération et pour une oléochimie « plus verte ».


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 40
Author(s):  
Margot Leclère ◽  
Marie-Hélène Jeuffroy ◽  
Chantal Loyce

The development of local diversification value-chains requires the design and implementation of cropping systems adapted to a diversity of farms and the management of crops for which very little knowledge is available. In this article, using the example of camelina in northern France to supply a local oilseed biorefinery, we illustrate how (i) the realisation of a design workshop based on the formalization and sharing of local knowledge produced by a multi-stakeholder participatory approach, and (ii) the analysis, formalization and sharing of the outputs of this design workshop, are useful for supporting the introduction of a new species in a territory. In total, each of the nine farmers attending the workshop designed one (or two) proposal(s) to include and manage camelina adapted to their own situation. The precise description of these proposals and the explanation of the technical choices, the identification of the factors explaining the diversity of the proposals designed, as well as the inventory of the functions expected of the crop by the farmers, which are presented in this paper, constitute a set of elements that could also be used to support other farmers in the area who would like to introduce this new species into their cropping system.


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 49
Author(s):  
Robert Gibson

After paying homage to the work of E. Chevreul, Prof. Robert Gibson went on in a lighthearted way to find similarities in the way they both approached their respective fields of research, as well as their way of life. Prof. Robert Gibson, who was awarded the 2021 Chevreul Medal, reported that “his huge delight was to witness the massive growth of lipid research and to have played a role in elucidating the role of dietary fats in the health of mothers and their babies”. Prof. Gibson highlighted some of the major results he collected from Australian clinical studies conducted on the role of omega-3 fatty acids on the health outcomes of mothers and their infants. He first discussed the role of fish oil on visual acuity of babies and demonstrated that infant formulas supplying more than 1% of linolenic acid (ALA) seemed adequate to ensure optimal visual and cognitive development of term infants. However, in preterm infants, whether there is a specific need for DHA above the benefit provided by ALA, still needs to be clarified. He reported a small beneficial impact on the cognitive development of preterm infants receiving DHA enriched breast milk of their mothers (1% of total fatty acids). He then discussed data from his large randomised clinical trials conducted on pregnant women receiving a DHA dietary treatment (800 mg/d DHA) or placebo, that suggested that DHA may decrease the risk of preterm birth (DOMInO trial, 2400 women). This effect was confirmed in the ORIP trial (5400 women) which found that preterm birth could be prevented by a DHA supplement treatment mainly in women with a singleton pregnancy who had a low omega-3 status in the first trimester. In the last part of his review, Robert Gibson described the use of a new low cost, rapid and efficient method to monitor changes in blood levels of omega-3 fatty acids with clinical outcomes: the Dried Blood Spots (DBS) technology. The validation of this technique has been demonstrated in large trials like N3RO and ORIP involving large cohorts of women, which could not have been obtained easily by classical analysis of lipids. He went on to point out that free fatty acids (generally not explored despite their importance in many metabolic disorders) and oxylipins, are both stable and easily identified when they are preserved in a dry state on a paper matrix (DBS), thus opening new fields of research. To conclude, the major impact of Prof. Robert Gibson’s work was identifying and overcoming one of the causes of early preterm birth (omega-3 deficiency), developing a tool to rapidly assess omega-3 status (the DBS technique) that together is close to being implemented into the world health system.


OCL ◽  
2021 ◽  
Vol 28 ◽  
pp. 54
Author(s):  
Etienne Pilorgé ◽  
Bruno Kezeya ◽  
Wolfgang Stauss ◽  
Frédéric Muel ◽  
Marcus Mergenthaler

Plant-based meat alternatives from grain legumes and oil crops are expected to play an increasing role in human nutrition. Several commercially available products use pea protein isolate as protein basis and rapeseed oil as lipid basis. The aim of the present study is to estimate the prospective area of peas and rapeseed for plant-based meat alternatives in the EU. A simple calculation model is employed to assess the impacts on land use and imported deforestation, in case plant-based meat alternatives substitute meat consumption in different shares. Various data sources and scenarios were used to estimate the cultivation potential. While pea acreage would increase considerably compared to current production, additional rapeseed acreage would be more limited. Even in an extreme scenario of 100% substitution only 12% of EU’s arable land would be used for pea and rapeseed as main ingredients for plant-based meat alternative. If pea protein isolate and rapeseed oil as main ingredients of plan-based meat alternatives increase, the land currently used for animal feed production would become partly available and imported deforestation could be decreased: a substitution of 25% of meat consumption would allow to provide the equivalent of food proteins without extending the cultivated areas in Europe, while avoiding soybean and maize imports for feed.


Sign in / Sign up

Export Citation Format

Share Document