Future climate change projects positive impacts on sugarcane productivity in southern China

2018 ◽  
Vol 96 ◽  
pp. 108-119 ◽  
Author(s):  
Hongyan Ruan ◽  
Puyu Feng ◽  
Bin Wang ◽  
Hongtao Xing ◽  
Garry J. O’Leary ◽  
...  
2014 ◽  
Vol 15 (5) ◽  
pp. 2085-2103 ◽  
Author(s):  
Guoyong Leng ◽  
Qiuhong Tang

Abstract Because of the limitations of coarse-resolution general circulation models (GCMs), delta change (DC) methods are generally used to derive scenarios of future climate as inputs into impact models. In this paper, the impact of future climate change on irrigation was investigated over China using the Community Land Model, version 4 (CLM4), which was calibrated against observed irrigation water demand (IWD) at the provincial level. The results show large differences in projected changes of IWD variability, extremes, timing, and regional responses between the DC and bias-corrected (BC) methods. For example, 95th-percentile IWD increased by 62% in the BC method compared to only a 28% increase in the DC method. In addition, a shift of seasonal IWD peaks (averaged over the country) to one month later in the year was projected when using the BC method, whereas no evident changes were predicted when using the DC method. Furthermore, low-percentile runoff has larger impacts in the BC method compared with proportional changes in the DC method, indicating that hydrological droughts seem to be exacerbated by increased climate variability. The discrepancies between the two methods were potentially due to the inability of the DC method to capture the changes in precipitation variability. Therefore, the authors highlight the potential effects of climate variability and the sensitivity to the choice of particular strategy-adjusting climate projection in assessing climate change impacts on irrigation. Some caveats, however, should be placed around interpretation of simulated percentage changes for all of China since a large model bias was found in southern China.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhenhua Luo ◽  
Xiaoyi Wang ◽  
Shaofa Yang ◽  
Xinlan Cheng ◽  
Yang Liu ◽  
...  

Abstract Background Understanding the impacts of past and contemporary climate change on biodiversity is critical for effective conservation. Amphibians have weak dispersal abilities, putting them at risk of habitat fragmentation and loss. Both climate change and anthropogenic disturbances exacerbate these risks, increasing the likelihood of additional amphibian extinctions in the near future. The giant spiny frog (Quasipaa spinosa), an endemic species to East Asia, has faced a dramatic population decline over the last few decades. Using the giant spiny frog as an indicator to explore how past and future climate changes affect landscape connectivity, we characterized the shifts in the suitable habitat and habitat connectivity of the frog. Results We found a clear northward shift and a reduction in the extent of suitable habitat during the Last Glacial Maximum for giant spiny frogs; since that time, there has been an expansion of the available habitat. Our modelling showed that “overwarm” climatic conditions would most likely cause a decrease in the available habitat and an increase in the magnitude of population fragmentation in the future. We found that the habitat connectivity of the studied frogs will decrease by 50–75% under future climate change. Our results strengthen the notion that the mountains in southern China and the Sino-Vietnamese transboundary regions can act as critical refugia and priority areas of conservation planning going forward. Conclusions Given that amphibians are highly sensitive to environmental changes, our findings highlight that the responses of habitat suitability and connectivity to climate change can be critical considerations in future conservation measures for species with weak dispersal abilities and should not be neglected, as they all too often are.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document