Combined effects of microenvironment and land use on C fluxes in a Mediterranean agro-silvopastoral system

2021 ◽  
Vol 130 ◽  
pp. 126348
Author(s):  
Federico Sanna ◽  
Giuseppe Campesi ◽  
Paola Deligios ◽  
Luigi Ledda ◽  
Giovanna Piluzza ◽  
...  
2020 ◽  
Author(s):  
George C. Hurtt ◽  
Louise Chini ◽  
Ritvik Sahajpal ◽  
Steve Frolking ◽  
Benjamin L. Bodirsky ◽  
...  

Abstract. Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with consequences for climate and other ecosystem services. In the future, land-use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community is developing the next generation of advanced Earth System Models (ESMs) to estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, are required as input for these models. Here we present results from the Land-use Harmonization 2 (LUH2) project, with the goal to smoothly connect updated historical reconstructions of land-use with new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land-use patterns, underlying land-use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds off a similar effort from CMIP5, and is now provided at higher resolution (0.25 × 0.25 degree), over a longer time domain (850–2100, with extensions to 2300), with more detail (including multiple crop and pasture types and associated management practices), using more input datasets (including Landsat remote sensing data), updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5, and are designed to enable new and improved estimates of the combined effects of land-use on the global carbon-climate system.


Author(s):  
Blanca N. Carvajal-Agudelo ◽  
Hernán J. Andrade

Soil is an important carbon reservoir as it can store twice the amount that atmosphere does and three times the biomass, which makes it a key component for climate change (CC) mitigation projects. It is important to know the potential of soil organic carbon storage (SOC) in the main uses of the soli and their expected dynamics due to potential use changes. SOCS is estimated in 7 of the dominant land use systems in the area of the study, with 5 replicas as follows: 1) banana with shade (SAF+banana); 2) cocoa with shade (Ca+S); 3) citrus (C); 4) low silvopastoral system (SSPB); 5) high silvopastoral system (SSPA); 6) gallery forests (BG); and 7) bush forest (MM). SOC concentration was analyzed in samples composed of 25 soil sub-samples per plot, and the DA was estimated with the cylinder method in a simple per plot. All land uses studied can mitigate CC when storing SOC. BG was the system that showed the highest carbon storage. On the other hand, SAF+banana stored the least SOC (72,7 vs 33,4Mg/ha, respectively). Changes in land use can cause CO2 emissions or an addition in carbon fixation. Changes in land use that increase SOC allow CC mitigation, which makes them feasible for funding, thus allowing an improvement in the livelihood of local producers.


2020 ◽  
Vol 34 (5) ◽  
pp. 1271-1280 ◽  
Author(s):  
Juan Gallego‐Zamorano ◽  
Ana Benítez‐López ◽  
Luca Santini ◽  
Jelle P. Hilbers ◽  
Mark A. J. Huijbregts ◽  
...  

2021 ◽  
Vol 318 ◽  
pp. 107490
Author(s):  
Marie Sünnemann ◽  
Julia Siebert ◽  
Thomas Reitz ◽  
Martin Schädler ◽  
Rui Yin ◽  
...  

2018 ◽  
Vol 374 (1764) ◽  
pp. 20180005 ◽  
Author(s):  
John R. Olson

Agricultural, industrial and urban development have all contributed to increased salinity in streams and rivers, but the likely effects of future development and climate change are unknown. I developed two empirical models to estimate how these combined effects might affect salinity by the end of this century (measured as electrical conductivity, EC). The first model predicts natural background from static (e.g. geology and soils) and dynamic (i.e. climate and vegetation) environmental factors and explained 78% of the variation in EC. I then compared the estimated background EC with current measurements at 2001 sites chosen probabilistically from all conterminous USA streams. EC was more than 50% greater at 34% of these sites. The second model predicts deviation of EC from background as a function of human land use and environmental factors and explained 60% of the variation in alteration from background. I then predicted the effects of climate and land use change on EC at the end of the century by replacing dynamic variables with published projections of future conditions based on the A2 emissions scenario. By the end of the century, the median EC is predicted to increase from 0.319 mS cm −1 to 0.524 mS cm −1 with over 50% of streams having greater than 50% increases in EC and 35% more than doubling their EC. Most of the change is related to increases in human land use, with climate change accounting for only 12% of the increase. In extreme cases, increased salinity may make water unsuitable for human use, but widespread moderate increases are likely a greater threat to stream ecosystems owing to the elimination of low EC habitats. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2014 ◽  
Vol 41 (6) ◽  
pp. 522 ◽  
Author(s):  
Yongyut Trisurat ◽  
Budsabong Kanchanasaka ◽  
Holger Kreft

Context Tropical ecosystems are widely recognised for their high species richness and outstanding concentrations of rare and endemic species. Previous studies either focussed on the effects of deforestation or climate change, whereas studies on the combined effects of these two major threats are limited. Aims This research aimed to model current and future distributions of medium- to large-sized mammal species on the basis of different land-use and climate-change scenarios in 2050 and to assess whether the predicted effects of land-use change are greater than those of climate change and whether the combined effects of these drivers are greater than those of either individual driver. Methods The present article demonstrates a method for combining nationwide wildlife-inventory data, spatially explicit species-distribution models, current and predicted future bioclimatic variables, other biophysical factors and human disturbance to map distributions of mammal species on the basis of different land-use and climate-change scenarios and to assess the role of protected areas in conservation planning. Key results Seventeen medium- to large-sized mammal species were selected for modelling. Most selected species were predicted to lose suitable habitat if the remaining forest cover declines from the current level of 57% to 50% in 2050. The predicted effects of deforestation were stronger than the effects of climate change. When climate and land-use change were combined, the predicted impacts were more severe. Most species would lose suitable habitat and the average shift in species distribution was greater than 40%. Conclusions The predicted effects were positive for only a few species and negative for most species. Current and future centres of mammal-species richness were predicted in large and contiguous protected forests and the average contribution of existing and proposed protected areas in protecting the focal species will increase from 73% to 80% across all scenarios. Implications The present research advances the current understanding of the ecology of 17 medium- to large-sized mammal species with conservation relevance and the factors that affect their distributions at the landscape scale. In addition, the research demonstrated that spatially explicit models and protected areas are effective means to contribute to protection of mammal species in current and future land-use and climate-change scenarios.


Sign in / Sign up

Export Citation Format

Share Document