Combined effects of land-use type and climate change on soil microbial activity and invertebrate decomposer activity

2021 ◽  
Vol 318 ◽  
pp. 107490
Author(s):  
Marie Sünnemann ◽  
Julia Siebert ◽  
Thomas Reitz ◽  
Martin Schädler ◽  
Rui Yin ◽  
...  
2018 ◽  
Vol 374 (1764) ◽  
pp. 20180005 ◽  
Author(s):  
John R. Olson

Agricultural, industrial and urban development have all contributed to increased salinity in streams and rivers, but the likely effects of future development and climate change are unknown. I developed two empirical models to estimate how these combined effects might affect salinity by the end of this century (measured as electrical conductivity, EC). The first model predicts natural background from static (e.g. geology and soils) and dynamic (i.e. climate and vegetation) environmental factors and explained 78% of the variation in EC. I then compared the estimated background EC with current measurements at 2001 sites chosen probabilistically from all conterminous USA streams. EC was more than 50% greater at 34% of these sites. The second model predicts deviation of EC from background as a function of human land use and environmental factors and explained 60% of the variation in alteration from background. I then predicted the effects of climate and land use change on EC at the end of the century by replacing dynamic variables with published projections of future conditions based on the A2 emissions scenario. By the end of the century, the median EC is predicted to increase from 0.319 mS cm −1 to 0.524 mS cm −1 with over 50% of streams having greater than 50% increases in EC and 35% more than doubling their EC. Most of the change is related to increases in human land use, with climate change accounting for only 12% of the increase. In extreme cases, increased salinity may make water unsuitable for human use, but widespread moderate increases are likely a greater threat to stream ecosystems owing to the elimination of low EC habitats. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2014 ◽  
Vol 41 (6) ◽  
pp. 522 ◽  
Author(s):  
Yongyut Trisurat ◽  
Budsabong Kanchanasaka ◽  
Holger Kreft

Context Tropical ecosystems are widely recognised for their high species richness and outstanding concentrations of rare and endemic species. Previous studies either focussed on the effects of deforestation or climate change, whereas studies on the combined effects of these two major threats are limited. Aims This research aimed to model current and future distributions of medium- to large-sized mammal species on the basis of different land-use and climate-change scenarios in 2050 and to assess whether the predicted effects of land-use change are greater than those of climate change and whether the combined effects of these drivers are greater than those of either individual driver. Methods The present article demonstrates a method for combining nationwide wildlife-inventory data, spatially explicit species-distribution models, current and predicted future bioclimatic variables, other biophysical factors and human disturbance to map distributions of mammal species on the basis of different land-use and climate-change scenarios and to assess the role of protected areas in conservation planning. Key results Seventeen medium- to large-sized mammal species were selected for modelling. Most selected species were predicted to lose suitable habitat if the remaining forest cover declines from the current level of 57% to 50% in 2050. The predicted effects of deforestation were stronger than the effects of climate change. When climate and land-use change were combined, the predicted impacts were more severe. Most species would lose suitable habitat and the average shift in species distribution was greater than 40%. Conclusions The predicted effects were positive for only a few species and negative for most species. Current and future centres of mammal-species richness were predicted in large and contiguous protected forests and the average contribution of existing and proposed protected areas in protecting the focal species will increase from 73% to 80% across all scenarios. Implications The present research advances the current understanding of the ecology of 17 medium- to large-sized mammal species with conservation relevance and the factors that affect their distributions at the landscape scale. In addition, the research demonstrated that spatially explicit models and protected areas are effective means to contribute to protection of mammal species in current and future land-use and climate-change scenarios.


2013 ◽  
Vol 28 (22) ◽  
pp. 5530-5546 ◽  
Author(s):  
Ruoyu Wang ◽  
Latif Kalin ◽  
Wenhui Kuang ◽  
Hanqin Tian

2011 ◽  
Vol 192 (3) ◽  
pp. 1243-1249 ◽  
Author(s):  
Jihai Zhou ◽  
Xuechao Li ◽  
Ying Jiang ◽  
Yue Wu ◽  
Jiandong Chen ◽  
...  

2021 ◽  
Author(s):  
Iria Benavente-Ferraces ◽  
Ana Rey ◽  
Marco Panettieri ◽  
Claudio Zaccone ◽  
Gabriel Gascó ◽  
...  

<p>The application of biochar is presumed to be a climate change mitigation strategy in agriculture. However, we still need to better understand the effects of biochar application on soil properties, particularly on soil microbial activity. This is because soil microorganisms play a key role in ecosystems functioning, as they have a central role in soil metabolic activity given that they are responsible for soil organic matter decomposition and nutrient cycling. Conversely, little is known about how climate change will affect the soil microbial activity.</p><p>In a rainfed field experiment, we studied the effect of forecasted warming and rainfall reduction on soil respiration and soil enzymatic activities after 3 years of consecutive application of biochar at a rate of 20 t/ha on a barley-camelina-fallow rotation in a semiarid region in Central Spain. Soil respiration was not affected by the application of biochar or/and warming and rainfall reduction treatments in comparison to the control treatment (no amendment). However, biochar amended soils had lower temperature sensitivity of soil C mineralization in the first two years when soils were cultivated but higher temperature sensitivity of soil C mineralization in the third year during fallow treatment. Enzymes involved in the C and N cycles (dehydrogenase, β-glucosidase and urease) significantly increased their activity under warming and rainfall reduction treatments, albeit biochar application tended to decrease the enzymatic activity under those treatments.</p><p>Acknowledgments: to the Spanish MICINN (MINECO, AEI, FEDER, EU) for supporting the research projects AGL2016-75762-R and CGL2015-65162-R.</p>


Sign in / Sign up

Export Citation Format

Share Document