cylinder method
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 25)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol Volume 14 ◽  
pp. 9211-9218
Author(s):  
Guangtai Shen ◽  
Xiaoqiang Yu ◽  
Tianyang Sun ◽  
Tian Hou ◽  
Heping He ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5199
Author(s):  
Laurie Jégo ◽  
Sylvain S. Guillou

Vertical axis turbines, which extract kinetic energy from currents, can produce electricity independently from a current’s direction. Hence, this type of turbines raises interest for harvesting energy from tidal currents, where flow changes direction during flood and ebb tides, and where currents present large variation of direction during tide. Methods for representing vertical axis turbines in tidal farms should be implemented in order to predict correctly power production with an acceptable time cost. The Actuator Cylinder (AC) is one of them. Numerical results in terms of wakes, with the study of velocity profiles, and efforts are compared to experiences, as well as showed that the method is sufficiently accurate and for a reasonable computing time, which is of prime importance for tidal turbines farms studies. The Actuator Cylinder method is implemented in ANSYS Fluent in a 2D stationary resolution. The method is then applied to a double levels of two counter-rotating rotors marine turbine designed by Hydroquest. Wake and power production of a single turbine and several farm configurations are studied under different current conditions (magnitude and direction).


Author(s):  
Blanca N. Carvajal-Agudelo ◽  
Hernán J. Andrade

Soil is an important carbon reservoir as it can store twice the amount that atmosphere does and three times the biomass, which makes it a key component for climate change (CC) mitigation projects. It is important to know the potential of soil organic carbon storage (SOC) in the main uses of the soli and their expected dynamics due to potential use changes. SOCS is estimated in 7 of the dominant land use systems in the area of the study, with 5 replicas as follows: 1) banana with shade (SAF+banana); 2) cocoa with shade (Ca+S); 3) citrus (C); 4) low silvopastoral system (SSPB); 5) high silvopastoral system (SSPA); 6) gallery forests (BG); and 7) bush forest (MM). SOC concentration was analyzed in samples composed of 25 soil sub-samples per plot, and the DA was estimated with the cylinder method in a simple per plot. All land uses studied can mitigate CC when storing SOC. BG was the system that showed the highest carbon storage. On the other hand, SAF+banana stored the least SOC (72,7 vs 33,4Mg/ha, respectively). Changes in land use can cause CO2 emissions or an addition in carbon fixation. Changes in land use that increase SOC allow CC mitigation, which makes them feasible for funding, thus allowing an improvement in the livelihood of local producers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247828
Author(s):  
Zhongyu Zhao ◽  
Junxue Zhao ◽  
Boqiao Qu ◽  
Yaru Cui

A viscosity estimation model for fluorine-containing mold flux for continuous casting was investigated based on the Arrhenius formula and the rotating cylinder method combined with nonlinear regression analysis. This model is highly applicable and not limited by the slag of a certain composition. For most slag compositions, the viscosities estimated with this model deviated from the measured values by no more than 10%, which was in better agreement with the measured values than the viscosities estimated by the Riboud, Iida and Mills models. According to the model calculation and experimental detection, a viscosity isogram of CaF2-Na2O-Al2O3-CaO-SiO2-MgO slag was produced, and the mass fraction of CaF2 in the low-viscosity zone was nearly 14%. An X-ray fluorescence spectrometric analysis of slag after the viscosity test showed that CaF2 and Na2O were significantly reduced, and the measured viscosity was greater than the theoretical viscosity due to the volatilization.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Boyang Li ◽  
Xin Geng ◽  
Zhouhua Jiang ◽  
Yu Hou ◽  
Wei Gong

In order to study the effect of BaO or B2O3 on the absorption of Ti inclusions, the effects of mold fluxes with different contents of BaO (0~15%) or B2O3 (0~15%) on the mass transfer coefficients of TiO2 or TiN were studied with the rotating cylinder method. The experimental results show that with the addition of BaO in the mold flux, the mass transfer coefficient of TiO2 increases from 4.58 × 10−4 m/s to 6.08 × 10−4 m/s, that of TiN increases from 3.09 × 10−4 m/s to 4.41 × 10−4 m/s, 2CaO·MgO·2SiO2 is transformed into BaO·2CaO·MgO·2SiO2, and the Ti inclusions combine with CaO to form CaTiO3. With the addition of B2O3 in the mold flux, the mass transfer coefficient of TiO2 increases from 4.58 × 10−4 m/s to 7.46 × 10−4 m/s, that of TiN increases from 3.09 × 10−4 m/s to 5.50 × 10−4 m/s, CaO and B2O3 combine to 2CaO·B2O3, and Ti inclusions exist in the form of TiO2. During the experiment, TiN will be transformed into titanium oxide.


2021 ◽  
Vol 118 (3) ◽  
pp. 316
Author(s):  
Qiang Gao ◽  
Longhu Cao

The surface tension of mold flux is an important parameter for controlling the quality of continuous billet, affected deeply by the compositions of mold flux and temperature, andclosed related with the structure of mold flux. In the present study, the effect of CaF2and temperature on the surface tension of CaO-SiO2-Al2O3-Na2O-CaF2 mold flux melts is investigated by the pulling cylinder method; furthermore, the structure of melts is determined by FT-IR spectroscopy to analyze the change mechanism of surface tension. The results indicate that the variation of surface tension is in accord with that of structure of melts. The surface tension of melt decreases with the increase of CaF2 mass fraction, and this tendency becomes more apparent at higher temperature. The FT-IR spectra show thatboth the amount of Obandthe degree of structural polymerization of melts decrease as the CaF2 content increases. This is because the Si-Ob bonds in the [SiO4]-tetrahedrons are broken by F− and transformed into Si-F bonds, and the silicon-oxygen anions with more complex structure were depolymerized into silicon-oxygen anions containing fluorine with simpler structure, resulting in an increase of Si-F saturated bonds on the melt surface, and thusreducing the surface tension of melts.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1691
Author(s):  
Kanto Shozu ◽  
Masaaki Komatsu ◽  
Akira Sakai ◽  
Reina Komatsu ◽  
Ai Dozen ◽  
...  

The application of segmentation methods to medical imaging has the potential to create novel diagnostic support models. With respect to fetal ultrasound, the thoracic wall is a key structure on the assessment of the chest region for examiners to recognize the relative orientation and size of structures inside the thorax, which are critical components in neonatal prognosis. In this study, to improve the segmentation performance of the thoracic wall in fetal ultrasound videos, we proposed a novel model-agnostic method using deep learning techniques: the Multi-Frame + Cylinder method (MFCY). The Multi-frame method (MF) uses time-series information of ultrasound videos, and the Cylinder method (CY) utilizes the shape of the thoracic wall. To evaluate the achieved improvement, we performed segmentation using five-fold cross-validation on 538 ultrasound frames in the four-chamber view (4CV) of 256 normal cases using U-net and DeepLabv3+. MFCY increased the mean values of the intersection over union (IoU) of thoracic wall segmentation from 0.448 to 0.493 for U-net and from 0.417 to 0.470 for DeepLabv3+. These results demonstrated that MFCY improved the segmentation performance of the thoracic wall in fetal ultrasound videos without altering the network structure. MFCY is expected to facilitate the development of diagnostic support models in fetal ultrasound by providing further accurate segmentation of the thoracic wall.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1061
Author(s):  
Guan-Yong Shi ◽  
Ting-An Zhang ◽  
Zhi-He Dou ◽  
Li-Ping Niu

In the preparation of CuCr alloy using the self-propagating high-temperature synthesis (SHS)-metallurgy method, the dissolution of alumina in molten slag has an important influence in two key steps: aluminum thermal reduction and slag refining. In the present work, the dissolution behavior of Al2O3 into molten SHS-metallurgical slags was investigated by employing the rotating cylinder method and static dissolution method. It is concluded that the increase of MgO, CaF2, CaO, and Na3AlF6 contents can increase the dissolution rate of alumina in SHS-metallurgical slag, and the order of influence is from strong to weak. Both temperature and rotating speed can increase the dissolution rate, and the rate-limiting step is the diffusion of alumina in the boundary layer, with the solid alumina first reacting with lime to form two intermediate phases, CaO·2Al2O3 and CaO·6Al2O3, and finally dissolving into the slag in the form of an aluminum polymer.


Author(s):  
Kai Hu ◽  
Kai Tang ◽  
Xuewei Lv ◽  
Jafar Safarian ◽  
Zhiming Yan ◽  
...  

Abstract TiO2-FeO-Ti2O3 slag system is the dominant system for industrial high-titania slag production. In the present work, viscosities of TiO2-FeO and TiO2-FeO-Ti2O3 systems were experimentally determined using the concentric rotating cylinder method under argon atmosphere. A viscosity model suitable for the TiO2-FeO-Ti2O3 slag system was then established based on the modification of the Vogel-Fulcher-Tammann (VFT) equation. The experimental results indicate that completely melted high-titania slags exhibit very low viscosity of around 0.8 dPa s with negligible dependence on temperature and compositions. However, it increases dramatically with decreasing temperature slightly below the critical temperature. Besides, the increase in FeO content was found to remarkably lower the critical temperature, while the addition of Ti2O3 increases it. The developed model can predict the viscosities of the TiO2-FeO-Ti2O3 and TiO2-FeO systems over wide ranges of compositions and temperatures within experimental uncertainties. The average relative error for the present model calculation is < 18.82 pct, which is better than the previously developed models for silicate slags reported in the literature. An iso-viscosity distribution diagram was made for the TiO2-FeO-Ti2O3 slag system, which can serve as a roadmap for the Ilmenite smelting reduction process as well as the high titania slags tapping process.


Sign in / Sign up

Export Citation Format

Share Document