Classification of estrogen receptor-β ligands on the basis of their binding affinities using support vector machine and linear discriminant analysis

2008 ◽  
Vol 43 (1) ◽  
pp. 43-52 ◽  
Author(s):  
F. Luan ◽  
H.T. Liu ◽  
W.P. Ma ◽  
B.T. Fan
2012 ◽  
Vol 8 (S295) ◽  
pp. 180-180
Author(s):  
He Ma ◽  
Yanxia Zhang ◽  
Yongheng Zhao ◽  
Bo Zhang

AbstractIn this work, two different algorithms: Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) are combined for the classification of unresolved sources from SDSS DR8 and UKIDSS DR8. The experimental result shows that this joint approach is effective for our case.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Heping Li ◽  
Yu Ren ◽  
Fan Yu ◽  
Dongliang Song ◽  
Lizhe Zhu ◽  
...  

To facilitate the enhanced reliability of Raman-based tumor detection and analytical methodologies, an ex vivo Raman spectral investigation was conducted to identify distinct compositional information of healthy (H), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Then, principal component analysis-linear discriminant analysis (PCA-LDA) and principal component analysis-support vector machine (PCA-SVM) models were constructed for distinguishing spectral features among different tissue groups. Spectral analysis highlighted differences in levels of unsaturated and saturated lipids, carotenoids, protein, and nucleic acid between healthy and cancerous tissue and variations in the levels of nucleic acid, protein, and phenylalanine between DCIS and IDC. Both classification models were principal component analysis-linear discriminant analysis to be extremely efficient on discriminating tissue pathological types with 99% accuracy for PCA-LDA and 100%, 100%, and 96.7% for PCA-SVM analysis based on linear kernel, polynomial kernel, and radial basis function (RBF), respectively, while PCA-SVM algorithm greatly simplified the complexity of calculation without sacrificing performance. The present study demonstrates that Raman spectroscopy combined with multivariate analysis technology has considerable potential for improving the efficiency and performance of breast cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document