Azaphenothiazines – promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties

2017 ◽  
Vol 138 ◽  
pp. 774-806 ◽  
Author(s):  
Krystian Pluta ◽  
Małgorzata Jeleń ◽  
Beata Morak-Młodawska ◽  
Michał Zimecki ◽  
Jolanta Artym ◽  
...  
2019 ◽  
Author(s):  
Jean-Louis Reymond ◽  
Mahendra Awale ◽  
Daniel Probst ◽  
Alice Capecchi

<p>Seven million of the currently 94 million entries in the PubChem database break at least one of the four Lipinski constraints for oral bioavailability, 183,185 of which are also found in the ChEMBL database. These non-Lipinski PubChem (NLP) and ChEMBL (NLC) subsets are interesting because they contain new modalities that can display biological properties not accessible to small molecule drugs. Unfortunately, the current search tools in PubChem and ChEMBL are designed for small molecules and are not well suited to explore these subsets, which therefore remain poorly appreciated. Herein we report MXFP (macromolecule extended atom-pair fingerprint), a 217-D fingerprint tailored to analyze large molecules in terms of molecular shape and pharmacophores. We implement MXFP in two web-based applications, the first one to visualize NLP and NLC interactively using Faerun (http://faerun.gdb.tools/), the second one to perform MXFP nearest neighbor searches in NLP (http://similaritysearch.gdb.tools/). We show that these tools provide a meaningful insight into the diversity of large molecules in NLP and NLC. The interactive tools presented here are publicly available at http://gdb.unibe.ch and can be used freely to explore and better understand the diversity of non-Lipinski molecules in PubChem and ChEMBL.</p>


2021 ◽  
Vol 22 (9) ◽  
pp. 4308
Author(s):  
Chayanaphat Chokradjaroen ◽  
Jiangqi Niu ◽  
Gasidit Panomsuwan ◽  
Nagahiro Saito

Sustainability and environmental concerns have persuaded researchers to explore renewable materials, such as nature-derived polysaccharides, and add value by changing chemical structures with the aim to possess specific properties, like biological properties. Meanwhile, finding methods and strategies that can lower hazardous chemicals, simplify production steps, reduce time consumption, and acquire high-purified products is an important task that requires attention. To break through these issues, electrical discharging in aqueous solutions at atmospheric pressure and room temperature, referred to as the “solution plasma process”, has been introduced as a novel process for modification of nature-derived polysaccharides like chitin and chitosan. This review reveals insight into the electrical discharge in aqueous solutions and scientific progress on their application in a modification of chitin and chitosan, including degradation and deacetylation. The influencing parameters in the plasma process are intensively explained in order to provide a guideline for the modification of not only chitin and chitosan but also other nature-derived polysaccharides, aiming to address economic aspects and environmental concerns.


1998 ◽  
Vol 51 (4) ◽  
pp. 439-441 ◽  
Author(s):  
TRIPTIKUMAR MUKHOPADHYAY ◽  
R. G. BHAT ◽  
KIRITY ROY ◽  
E. K. S. VIJAYAKUMAR ◽  
B. N. GANGULI

2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


2021 ◽  
Author(s):  
◽  
Taitusi Taufa

<p>Over the course of this study, various species of Tongan marine sponges were investigated using an NMR-based screening method and has resulted in the discovery of three new sesterterpenes and 11 known compounds. Examination of the sponge Fascaplysinopsis sp. resulted in the isolation of two novel sesterterpenes, isoluffariellolide (46) and 1-O-methylisoluffariellolide (47). Compounds 46 and 47 share the same backbone pattern as the known luffariellolide (45) and 25-Omethylluffariellolide (107) respectively, and differ only in the substitution pattern of the butenolide rings. Isoluffariellolide (46) was found to be approximately six times less cytotoxic than 1-O-methylisoluffariellolide (47). Interestingly, these results suggested that the 1-O-methyl group in compound 47 plays an important role in the cytotoxicity of the compound. Secothorectolide (49), a new ring-opened and geometric isomer of the known compound thorectolide (48), was obtained from a sponge of the order Dictyoceratida. This ring closure and opening relationship was also observed between manoalide (109) and secomanoalide (110), as well as luffariellins A (141) and B (142). Despite the different carbon skeleton, the functional groups in 141 and 142 are similar with those in 109 and 110, respectively, and not surprisingly the biological properties are almost identical. The biological activities of compounds 48 and 49 were almost the same, which would give an insight into the structure-activity relationship (SAR) between these types of compounds.</p>


ChemInform ◽  
2010 ◽  
Vol 31 (14) ◽  
pp. no-no
Author(s):  
Hitoshi Takeuchi ◽  
Naoki Asai ◽  
Kazunori Tanabe ◽  
Teruya Kozaki ◽  
Masanori Fujita ◽  
...  

2020 ◽  
Vol 68 (39) ◽  
pp. 10685-10696
Author(s):  
Chengtao Sun ◽  
Shivraj Hariram Nile ◽  
Yiting Zhang ◽  
Luping Qin ◽  
Hesham R. El-Seedi ◽  
...  

1999 ◽  
Vol 52 (11) ◽  
pp. 971-982 ◽  
Author(s):  
HITOSHI TAKEUCHI ◽  
NAOKI ASAI ◽  
KAZUNORI TANABE ◽  
TERUYA KOZAKI ◽  
MASANORI FUJITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document