scholarly journals Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3

2019 ◽  
Vol 168 ◽  
pp. 58-77 ◽  
Author(s):  
Killian Oukoloff ◽  
Nicolas Coquelle ◽  
Manuela Bartolini ◽  
Marina Naldi ◽  
Rémy Le Guevel ◽  
...  
2022 ◽  
Author(s):  
Samuel Pazicky ◽  
Arne Alder ◽  
Haydyn Mertens ◽  
Dmitri I. Svergun ◽  
Tim Gilberger ◽  
...  

As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasite's life cycle. In the uncanonical N‑terminal region of the parasite enzyme, we identified several autophosphorylation sites and probed their role in activity regulation of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N‑terminus, triggered by N‑terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.


2021 ◽  
Author(s):  
Samuel Pazicky ◽  
Arne Alder ◽  
Haydyn Mertens ◽  
D. I. Svergun ◽  
Tim Gilberger ◽  
...  

As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasite`s life cycle. Here, we show that PfGSK3 exhibits autophosphorylation, leading to an extensive phosphorylation both in vitro and in the parasite. In the uncanonical N-terminal region of the parasite enzyme, we identified several autophosphorylation sites that regulate the activity of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N-terminus, triggered by N-terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.


2020 ◽  
Vol 27 ◽  
Author(s):  
Agnieszka Jankowska ◽  
Grzegorz Satała ◽  
Andrzej J. Bojarski ◽  
Maciej Pawłowski ◽  
Grażyna Chłoń-Rzepa

: Alzheimer’s disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological, and clinical profiles need to be defined.


Sign in / Sign up

Export Citation Format

Share Document