Generating and using patient-specific whole-body models for organ dose estimates in CT with increased accuracy: Feasibility and validation

2014 ◽  
Vol 30 (8) ◽  
pp. 925-933 ◽  
Author(s):  
Willi A. Kalender ◽  
Natalia Saltybaeva ◽  
Daniel Kolditz ◽  
Martin Hupfer ◽  
Marcel Beister ◽  
...  
Author(s):  
Erika Kollitz ◽  
Haegin Han ◽  
Chan Hyeong Kim ◽  
Marco Pinto ◽  
Marco Schwarz ◽  
...  

Abstract Objective: As cancer survivorship increases, there is growing interest in minimizing the late effects of radiation therapy such as radiogenic second cancer, which may occur anywhere in the body. Assessing the risk of late effects requires knowledge of the dose distribution throughout the whole body, including regions far from the treatment field, beyond the typical anatomical extent of clinical CT scans. Approach: A hybrid phantom was developed which consists of in-field patient CT images extracted from ground truth whole-body CT (WBCT) scans, out-of-field mesh phantoms scaled to basic patient measurements, and a blended transition region. Four of these hybrid phantoms were created, representing male and female patients receiving proton therapy treatment in pelvic and cranial sites. To assess the performance of the hybrid approach, we simulated treatments using the hybrid phantoms, the scaled and unscaled mesh phantoms, and the ground truth whole-body CTs. We calculated absorbed dose and equivalent dose in and outside of the treatment field, with a focus on neutrons induced in the patient by proton therapy. Proton and neutron dose was calculated using a general purpose Monte Carlo code. Main Results: The hybrid phantom provided equal or superior accuracy in calculated organ dose and equivalent dose values relative to those obtained using the mesh phantoms in 78% in all selected organs and calculated dose quantities. Comparatively the default mesh and scaled mesh were equal or superior to the other phantoms in 21% and 28% of cases respectively. Significance: The proposed methodology for hybrid synthesis provides a tool for whole-body organ dose estimation for individual patients without requiring CT scans of their entire body. Such a capability would be useful for personalized assessment of late effects and risk-optimization of treatment plans.


2009 ◽  
Vol 97 (12) ◽  
pp. 2026-2038 ◽  
Author(s):  
Amandine Le Maitre ◽  
William Paul Segars ◽  
Simon Marache ◽  
Anthonin Reilhac ◽  
Mathieu Hatt ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingjie Shang ◽  
Zhiqiang Tan ◽  
Yong Cheng ◽  
Yongjin Tang ◽  
Bin Guo ◽  
...  

Abstract Background Standardized uptake value (SUV) normalized by lean body mass ([LBM] SUL) is recommended as metric by PERCIST 1.0. The James predictive equation (PE) is a frequently used formula for LBM estimation, but may cause substantial error for an individual. The purpose of this study was to introduce a novel and reliable method for estimating LBM by limited-coverage (LC) CT images from PET/CT examinations and test its validity, then to analyse whether SUV normalised by LC-based LBM could change the PERCIST 1.0 response classifications, based on LBM estimated by the James PE. Methods First, 199 patients who received whole-body PET/CT examinations were retrospectively retrieved. A patient-specific LBM equation was developed based on the relationship between LC fat volumes (FVLC) and whole-body fat mass (FMWB). This equation was cross-validated with an independent sample of 97 patients who also received whole-body PET/CT examinations. Its results were compared with the measurement of LBM from whole-body CT (reference standard) and the results of the James PE. Then, 241 patients with solid tumours who underwent PET/CT examinations before and after treatment were retrospectively retrieved. The treatment responses were evaluated according to the PE-based and LC-based PERCIST 1.0. Concordance between them was assessed using Cohen’s κ coefficient and Wilcoxon’s signed-ranks test. The impact of differing LBM algorithms on PERCIST 1.0 classification was evaluated. Results The FVLC were significantly correlated with the FMWB (r=0.977). Furthermore, the results of LBM measurement evaluated with LC images were much closer to the reference standard than those obtained by the James PE. The PE-based and LC-based PERCIST 1.0 classifications were discordant in 27 patients (11.2%; κ = 0.823, P=0.837). These discordant patients’ percentage changes of peak SUL (SULpeak) were all in the interval above or below 10% from the threshold (±30%), accounting for 43.5% (27/62) of total patients in this region. The degree of variability is related to changes in LBM before and after treatment. Conclusions LBM algorithm-dependent variability in PERCIST 1.0 classification is a notable issue. SUV normalised by LC-based LBM could change PERCIST 1.0 response classifications based on LBM estimated by the James PE, especially for patients with a percentage variation of SULpeak close to the threshold.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


Author(s):  
Mao Li ◽  
Karol Miller ◽  
Grand Joldes ◽  
Ron Kikinis ◽  
Adam Wittek

2020 ◽  
Vol 6 (4) ◽  
pp. 045016
Author(s):  
Choonsik Lee ◽  
Jiamin Liu ◽  
Keith Griffin ◽  
Les Folio ◽  
Ronald M Summers

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed using large-scale models of the human lung airway and unsteady periodic breathing conditions. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to the 16th generation) obtained from a stochastically generated airway tree with statistically realistic morphological characteristics. A reduced-geometry airway model was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to the 16th generation. The inlet and outlet flow boundaries corresponded to the oral opening, the physical inlet/outlet boundaries at the terminal bronchioles, and the unresolved airway boundaries created from the truncation procedure. The total flow rate was specified according to the expected ventilation pattern for a healthy adult male, which was supplied by the whole-body modeling software HumMod. The unsteady mass flow distribution at the distal boundaries was prescribed based on a preliminary steady-state simulation with an applied flow rate equal to the average flow rate during the inhalation phase of the breathing cycle. In contrast to existing studies, this approach allows fully coupled simulation of the entire conducting zone, with no need to specify distal mass flow or pressure boundary conditions a priori, and without the use of impedance or one-dimensional (1D) flow models downstream of the truncated boundaries. The results show that: (1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; (2) the predicted alveolar pressure is in good agreement with correlated experimental data; and (3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chen-Hsi Hsieh ◽  
Pei-Wei Shueng ◽  
Shih-Chiang Lin ◽  
Hui-Ju Tien ◽  
An-Cheng Shiau ◽  
...  

A 36-year-old woman was diagnosed with a therapy-refractory cutaneous CD4+ T-cell lymphoma, T3N0M0B0, and stage IIB. Helical irradiation of the total skin (HITS) and dose painting techniques, with 30 Gy in 40 fractions interrupted at 20 fractions with one week resting, 4 times per week were prescribed. The diving suit was dressed whole body to increase the superficial dose and using central core complete block (CCCB) technique for reducing the internal organ dose. The mean doses of critical organs of head, chest, and abdomen were 2.1 to 29.9 Gy, 2.9 to 8.1 Gy, and 3.6 to 15.7 Gy, respectively. The mean dose of lesions was 84.0 cGy. The dosage of left side pretreated area was decreased 57%. The tumor regressed progressively without further noduloplaques. During the HITS procedure, most toxicity was grade I except leukocytopenia with grade 3. No epitheliolysis, phlyctenules, tumor lysis syndrome, fever, vomiting, dyspnea, edema of the extremities, or diarrhea occurred during the treatment. HITS with dose painting techniques provides precise dosage delivery with impressive results, sparing critical organs, and offering limited transient and chronic sequelae for previously locally irradiated, therapy-refractory cutaneous T-cell lymphoma.


Sign in / Sign up

Export Citation Format

Share Document