Cyclic Breathing Simulations in Large Scale Models of the Lung Airway From the Oronasal Opening to the Terminal Bronchioles

Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed using large-scale models of the human lung airway and unsteady periodic breathing conditions. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to the 16th generation) obtained from a stochastically generated airway tree with statistically realistic morphological characteristics. A reduced-geometry airway model was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to the 16th generation. The inlet and outlet flow boundaries corresponded to the oral opening, the physical inlet/outlet boundaries at the terminal bronchioles, and the unresolved airway boundaries created from the truncation procedure. The total flow rate was specified according to the expected ventilation pattern for a healthy adult male, which was supplied by the whole-body modeling software HumMod. The unsteady mass flow distribution at the distal boundaries was prescribed based on a preliminary steady-state simulation with an applied flow rate equal to the average flow rate during the inhalation phase of the breathing cycle. In contrast to existing studies, this approach allows fully coupled simulation of the entire conducting zone, with no need to specify distal mass flow or pressure boundary conditions a priori, and without the use of impedance or one-dimensional (1D) flow models downstream of the truncated boundaries. The results show that: (1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; (2) the predicted alveolar pressure is in good agreement with correlated experimental data; and (3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


2018 ◽  
Vol 18 (5) ◽  
pp. 3839-3864 ◽  
Author(s):  
Christian Hogrefe ◽  
Peng Liu ◽  
George Pouliot ◽  
Rohit Mathur ◽  
Shawn Roselle ◽  
...  

Abstract. This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry – Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.


2017 ◽  
Author(s):  
Christian Hogrefe ◽  
Peng Liu ◽  
George Pouliot ◽  
Rohit Mathur ◽  
Shawn Roselle ◽  
...  

Abstract. This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental U.S. for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ Process Analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couple fluctuations in free tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry – Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), GEOS-Chem, and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the mid- and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8-hr average ozone on individual days. In contrast, the differences between the C-IFS, GEOS-Chem, and H-CMAQ driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Matthew D. Ford ◽  
Hristo N. Nikolov ◽  
Jaques S. Milner ◽  
Stephen P. Lownie ◽  
Edwin M. DeMont ◽  
...  

Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement between PIV and CFD suggests that CFD can reliably predict the details of the intra-aneurysmal flow dynamics observed in anatomically realistic in vitro models. Nevertheless, given the various modeling assumptions, this does not prove that they are mimicking the actual in vivo hemodynamics, and so validations against in vivo data are encouraged whenever possible.


Author(s):  
Arvind Kumar Prajapati ◽  
Rajendra Prasad

This paper proposes a new model order reduction technology for the simplification of the complexity of large scale models. The proposed technique is focused on the Mihailov stability approach that guarantees the stability of the reduced model constrained that the complex system is stable. In this scheme, the denominator coefficients of the approximated simplified system are computed by using the Mihailov stability algorithm and the truncation method is used for the determination of coefficients of the numerator polynomial. The effectiveness and efficiency of the proposed approach are illustrated by comparing the step responses of the given system and approximated lower order models. The error indices such as integral square error (ISE), relative integral square error (RISE), integral absolute error (IAE) and integral time weighted absolute error (ITAE) are used as performance indices for comparing the proposed scheme with other existing standard reduced order modeling methods. The obtained reduced model is used for the designing of controllers for the original complex system. A new scheme for the determination of controllers is also proposed for the large scale models with help of reduced order modeling. The proposed technique is validated by applying it to an eighth order flexible-missile control system and a third order fuel control system. The simulation results show the dominance of the proposed methodologies over the latest model diminution techniques available in the literature.


Author(s):  
M. W. Woo ◽  
S. Afshar ◽  
H. Jubaer ◽  
B. Chen ◽  
J. Xiao ◽  
...  

Self-sustained fluctuating airflow behaviour in spray drying chambers is in essence an unsteady phenomenon requiring the transient CFD simulation framework. There is currently, however, a mixture of steady state and transient CFD simulations of spray dryers practised and reported in the literature. The choice between steady state and transient approach significantly affects the computation time of the simulation and subsequently the adoption of this approach by industry. This paper firstly examines in detail the bottleneck in computation time of the transient simulation approach. Based on past reports, this review paper then presents a discussion and provides several recommendations on the use of steady state and transient simulation approach for spray dryers. Keywords: CFD simulation, spray drying, transient, steady state, fluctuation 


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed to predict the air flow in the human lung during cyclic breathing. The study employed a morphologically complex computational geometry generated using a combination of patient-specific CT-scan data for the extrathoracic and upper airway regions and a representative branching geometry for the lower airways that is available in the open literature. The geometry extended throughout the entire conducting zone and includes 16 partially resolved airway generations. For each generation beyond the third, only a fraction of the airway branches were retained, resulting in truncated flow outlets (for inspiratory flow) in generations 414. The inhalation and exhalation air flow boundary conditions were prescribed based on a physiologically realistic ventilation pattern, which was obtained using a whole-body model of human physiology. The flow was driven by specifying time-varying volumetric flowrates applied at each of the distal boundaries, while the oral boundary was maintained at constant (atmospheric) pressure. The study investigated the effectiveness of three different mass flow distribution schemes to drive the air flow. It was found that prescribed mass flow distribution fractions based on the square of the airway cross-sectional area produced the best results in terms of a uniform distal pressure distribution, while all methods produced reasonable results in terms of mass flow distribution throughout the lung airway geometry.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Evangelos Boutsianis ◽  
Michele Guala ◽  
Ufuk Olgac ◽  
Simon Wildermuth ◽  
Klaus Hoyer ◽  
...  

There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.


Sign in / Sign up

Export Citation Format

Share Document