scholarly journals Impact of photon cross section uncertainties on Monte Carlo-determined depth-dose distributions

2016 ◽  
Vol 32 (9) ◽  
pp. 1065-1071 ◽  
Author(s):  
E. Aguirre ◽  
M. David ◽  
C.E. deAlmeida ◽  
M.A. Bernal
1999 ◽  
Vol 85 (1) ◽  
pp. 75-78 ◽  
Author(s):  
H. Miralles ◽  
M.A. Duch ◽  
M. Ginjaume ◽  
X. Ortega

1997 ◽  
Vol 72 (4) ◽  
pp. 574-578
Author(s):  
M. Rodriguez-Villafuerte ◽  
I. Gamboa-DeBuen ◽  
M. E. Brandan

2016 ◽  
Vol 27 (1) ◽  
pp. 18-20
Author(s):  
Uum Yuliani ◽  
Ridwan Ramdani ◽  
Freddy Haryanto ◽  
Yudha Satya Perkasa ◽  
Mada Sanjaya

Varian linac modeling has been carried out to obtain Percentage Depth Dose (PDD) and profiles using variations gantry angle 0o, 15o, 30o , 45o in the vertical axis of the surface, field size 10x10 cm2, photon beam 4 MV and Monte Carlo simulations. Percentage Depth Dose and profile illustrates dose distributions in a phantom water measuring 40x40x40 cm3, changes gantry is one of the factors that determine the distribution of the dose to the patient research shows changes in Dmax in the Percentage Depth Dose is affected by changes in the angle gantry resulted in the addition of the area build up so it can be used for therapy in the region and produce skin sparing effects that can be used to protect the skin from exposure to radiation. The graph result is profiles obtained show lack simetrisan in areas positive quadrant has a distribution of fewer doses than the quadrant of negative as well as the slope of the surface so that it can be used for some cases treatments that require a depth and a certain slope, dose calculations are more accurate and can minimize side effects.


2021 ◽  
Author(s):  
Yoshinori Tanabe ◽  
Toshie Iseri ◽  
Ryouta Onizuka ◽  
Takayuki Ishida ◽  
Hidetoshi Eto ◽  
...  

Abstract Accurate dose assessment during animal radiotherapy is beneficial for veterinary medicine and medical education. We evaluated the dose distributions of kilovoltage X-ray orthovoltage radiotherapy and created a dog skull water phantom for animal-specific radiotherapy. EGSnrc-based BEAMnrc and DOSXYZnrc codes were used to simulate orthovoltage dose distributions. At 10, 20, 30, 40, 50 and 80 mm in a water phantom, depth dose was measured with waterproof Farmer dosimetry chambers and the diagonal off-axis ratio was measured with Gafchromic EBT3 film to simulate orthovoltage dose distributions. Energy differences between orthovoltage and linear accelerated radiotherapy were assessed with a heterogeneous bone and tissue virtual phantom. The animal-specific phantom for radiotherapy quality assurance was created from CT scans of a dog and printed with a three-dimensional printer using polyamide 12 nylon, with insertion points for dosimetry chambers and Gafchromic EBT3 film. Monte Carlo simulated and measured dose distributions differed by no more than 2.0% along the central axis up to a depth of 80 mm. The anode heel effect occurred in shallow areas. The orthovoltage radiotherapy percentage depth dose in bone was >40%. Build-up was >40%, with build-down after bone exit, whereas linear accelerator radiotherapy absorption changed little in the bone. A highly water-impermeable, animal-specific dog skull water phantom could be created to evaluate dose distribution.Animal-specific water phantoms and Monte Carlo simulated pre-treatment radiotherapy is useful quality assurance for orthovoltage radiotherapy and yields a visually familiar phantom that will be useful for veterinary medical education.


Nukleonika ◽  
2014 ◽  
Vol 59 (2) ◽  
pp. 61-66 ◽  
Author(s):  
Małgorzata Grządziel ◽  
Adam Konefał ◽  
Wiktor Zipper ◽  
Robert Pietrzak ◽  
Ewelina Bzymek

Abstract Verification of calculations of the depth-dose distributions in water, using GEANT4 (version of 4.9.3) and MCNPX (version of 2.7.0) Monte Carlo codes, was performed for the scatterer-phantom system used in the dosimetry measurements in the proton therapy of eye tumours. The simulated primary proton beam had the energy spectra distributed according to the Gauss distribution with the cut at energy greater than that related to the maximum of the spectrum. The energy spectra of the primary protons were chosen to get the possibly best agreement between the measured relative depth-dose distributions along the central-axis of the proton beam in a water phantom and that derived from the Monte Carlo calculations separately for the both tested codes. The local depth-dose differences between results from the calculations and the measurements were mostly less than 5% (the mean value of 2.1% and 3.6% for the MCNPX and GEANT4 calculations). In the case of the MCNPX calculations, the best fit to the experimental data was obtained for the spectrum with maximum at 60.8 MeV (more probable energy), FWHM of the spectrum of 0.4 MeV and the energy cut at 60.85 MeV whereas in the GEANT4 calculations more probable energy was 60.5 MeV, FWHM of 0.5 MeV, the energy cut at 60.7 MeV. Thus, one can say that the results obtained by means of the both considered Monte Carlo codes are similar but they are not the same. Therefore the agreement between the calculations and the measurements has to be verified before each application of the MCNPX and GEANT4 codes for the determination of the depth-dose curves for the therapeutic protons.


Sign in / Sign up

Export Citation Format

Share Document