scholarly journals Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR

2018 ◽  
Vol 266 (2) ◽  
pp. 595-608 ◽  
Author(s):  
Ali İrfan Mahmutoğulları ◽  
Özlem Çavuş ◽  
M. Selim Aktürk
2021 ◽  
Author(s):  
Xuecheng Yin ◽  
Esra Buyuktahtakin

Existing compartmental-logistics models in epidemics control are limited in terms of optimizing the allocation of vaccines and treatment resources under a risk-averse objective. In this paper, we present a data-driven, mean-risk, multi-stage, stochastic epidemics-vaccination-logistics model that evaluates various disease growth scenarios under the Conditional Value-at-Risk (CVaR) risk measure to optimize the distribution of treatment centers, resources, and vaccines, while minimizing the total expected number of infections, deaths, and close contacts of infected people under a limited budget. We integrate a new ring vaccination compartment into a Susceptible-Infected-Treated-Recovered-Funeral-Burial epidemics-logistics model. Our formulation involves uncertainty both in the vaccine supply and the disease transmission rate. Here, we also consider the risk of experiencing scenarios that lead to adverse outcomes in terms of the number of infected and dead people due to the epidemic. Combining the risk-neutral objective with a risk measure allows for a trade-off between the weighted expected impact of the outbreak and the expected risks associated with experiencing extremely disastrous scenarios. We incorporate human mobility into the model and develop a new method to estimate the migration rate between each region when data on migration rates is not available. We apply our multi-stage stochastic mixed-integer programming model to the case of controlling the 2018-2020 Ebola Virus Disease (EVD) in the Democratic Republic of the Congo (DRC) using real data. Our results show that increasing the risk-aversion by emphasizing potentially disastrous outbreak scenarios reduces the expected risk related to adverse scenarios at the price of the increased expected number of infections and deaths over all possible scenarios. We also find that isolating and treating infected individuals are the most efficient ways to slow the transmission of the disease, while vaccination is supplementary to primary interventions on reducing the number of infections. Furthermore, our analysis indicates that vaccine acceptance rates affect the optimal vaccine allocation only at the initial stages of the vaccine rollout under a tight vaccine supply.


2019 ◽  
Vol 34 (5) ◽  
pp. 3667-3676 ◽  
Author(s):  
Ali Irfan Mahmutogullari ◽  
Shabbir Ahmed ◽  
Ozlem Cavus ◽  
M. Selim Akturk

2014 ◽  
Vol 152 (1-2) ◽  
pp. 275-300 ◽  
Author(s):  
Václav Kozmík ◽  
David P. Morton

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1392 ◽  
Author(s):  
Iram Parvez ◽  
JianJian Shen ◽  
Mehran Khan ◽  
Chuntian Cheng

The hydro generation scheduling problem has a unit commitment sub-problem which deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable energy source for many countries, so there is a need to find better methods which give optimal hydro scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm, fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro plants and gives efficient results. Dynamic programming handles simple constraints and it is easily adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear programming, mixed integer linear programming, sequential lagrange and non-linear approach deals with network constraints and head sensitive cascaded hydropower plants. The stochastic programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future work is also suggested.


2020 ◽  
Author(s):  
Eyyüb Y. Kıbış ◽  
I. Esra Buyuktahtakin ◽  
Robert G. Haight ◽  
Najmaddin Akhundov ◽  
Kathleen Knight ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document