Group III metabotropic glutamate receptors act as hetero-receptors modulating evoked GABA release in the globus pallidus in vivo

2008 ◽  
Vol 580 (1-2) ◽  
pp. 95-99 ◽  
Author(s):  
Nicholas MacInnes ◽  
Susan Duty
1998 ◽  
Vol 80 (4) ◽  
pp. 1932-1938 ◽  
Author(s):  
Gong Chen ◽  
Anthony N. van den Pol

Chen, Gong and Anthony N. van den Pol. Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J. Neurophysiol. 80: 1932–1938, 1998. Glutamate is the primary excitatory transmitter in axons innervating the hypothalamic suprachiasmatic nucleus (SCN) and is responsible for light-induced phase shifts of circadian rhythms generated by the SCN. By using self-innervating single neuron cultures and patch-clamp electrophysiology, we studied metabotropic glutamate receptors (mGluRs) expressed by SCN neurons. The selective agonists for group I (3,5-dihydroxy-phenylglycine), group II ((S)-4-carboxy-3-hydroxyphenylglycine), and group III (l(+)-2-amino-4-phosphonobutyric acid) mGluRs all depressed the evoked IPSC in a subset (33%) of single autaptic neurons, suggesting a coexpression of all three groups of mGluRs in the same axon terminals of a single neuron. Other neurons showed a variety of combinations of mGluRs, including an expression of only one group of mGluR (18%) or coexpression of two groups of mGluRs (27%). Some neurons had no response to any of the three agonists (22%). The three mGluR agonists had no effect on postsynaptic γ-aminobutyric acid (GABA) receptor responses, indicating a presynaptic modulation of GABA release by mGluRs. We conclude that multiple mGluRs that act through different second messenger pathways are coexpressed in single axon terminals of SCN neurons where they modulate the release of GABA presynaptically, usually inhibiting release.


1997 ◽  
Vol 77 (2) ◽  
pp. 527-527 ◽  
Author(s):  
L. A. Schrader ◽  
J. G. Tasker

Schrader, L. A. and J. G. Tasker. Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J. Neurophysiol. 77: 527–536, 1997. The effects of activation of metabotropic glutamate receptors (mGluRs) on synaptic inputs to magnocellular neurons of the hypothalamic supraoptic nucleus (SON) were studied with the use of whole cell patch-clamp and microelectrode recordings in acute hypothalamic slices. Application of the mGluR agonist trans-(±)-1-amino-1,3-cyclopentane dicarboxylic acid ( trans-ACPD, 100 μM) elicited an increase in the frequency of spontaneous excitatory postsynaptic potentials (EPSPs) and excitatory postsynaptic currents (EPSCs) in 20% of the cells, and of spontaneous inhibitory postsynaptic potentials (IPSPs) and inhibitory postsynaptic currents (IPSCs) in 50% of the cells tested in normal medium. The increased frequency of spontaneous EPSPs/EPSCs and IPSPs/IPSCs was blocked by tetrodotoxin (TTX), indicating that mGluRs act to excite the somata/dendrites of presynaptic glutamatergic and GABAergic neurons. (RS)-3,5-dihydroxyphenylglycine (50 μM), a selective group I receptor agonist, mimicked the presynaptic somatic/dendritic effects of trans-ACPD, suggesting that the presynaptic somatic/dendritic receptors responsible for increased spike-dependent glutamate and γ-aminobutyric acid (GABA) release belong to the group I mGluRs. In the presence of TTX, trans-ACPD caused a decrease in the frequency of miniature EPSCs (up to 90%) in 13 of 16 cells, and a decrease in the frequency of miniature IPSCs (up to 80%) in 10 of 16 cells tested. Miniature EPSC and IPSC amplitudes usually did not change in trans-ACPD, suggesting that activation of metabotropic receptors located at presynaptic glutamatergic and GABAergic terminals led to a reduction in transmitter release onto SON magnocellular neurons. l(+)-2-amino-4-phosphonobutyric acid (100–250 μM), a selective group III receptor agonist, mimicked the effects of trans-ACPD at presynaptic terminals, decreasing the frequency of miniature EPSCs and IPSCs by up to 85% without affecting their amplitude. Thus the metabotropic receptors at presynaptic glutamate and GABA terminals in the SON belong to group III mGluRs. EPSCs evoked by electrical stimulation were enhanced by the group III receptor antagonist (S)-2-amino-2-methyl-4-phosphonobutanoic acid, suggesting that presynaptic metabotropic receptors are activated by the release of endogenous glutamate. These data indicate that mGluRs in the hypothalamus have opposing actions at presynaptic somata/dendrites and at presynaptic terminals. Activation of group I receptors (mGluR1 and/or mGluR5) on presynaptic somata/dendrites led to an increase in spike-dependent transmitter release, whereas activation of the group III receptors (mGluR4, 7, and/or 8) on presynaptic terminals suppressed glutamate and GABA release onto SON neurons. No diffferences were seen in the effects of mGluR activation between immunohistochemically identified oxytocin and vasopressin neurons of the SON.


2008 ◽  
Vol 55 (4) ◽  
pp. 483-490 ◽  
Author(s):  
Sebastien Lopez ◽  
Nathalie Turle-Lorenzo ◽  
Tom H. Johnston ◽  
Jonathan M. Brotchie ◽  
Stephan Schann ◽  
...  

2006 ◽  
Vol 19 (2) ◽  
pp. 131 ◽  
Author(s):  
Chang Mo Kim ◽  
Jeong Il Choi ◽  
Hong Beom Bae ◽  
Seok Jai Kim ◽  
Sung Tae Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document