scholarly journals Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems

2019 ◽  
Vol 137 ◽  
pp. 104967 ◽  
Author(s):  
Ben J. Boyd ◽  
Christel A.S. Bergström ◽  
Zahari Vinarov ◽  
Martin Kuentz ◽  
Joachim Brouwers ◽  
...  
2013 ◽  
Vol 63 (4) ◽  
pp. 427-445 ◽  
Author(s):  
Katja Čerpnjak ◽  
Alenka Zvonar ◽  
Mirjana Gašperlin ◽  
Franc Vrečer

Abstract Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions.


Molecules ◽  
2015 ◽  
Vol 20 (11) ◽  
pp. 20397-20408 ◽  
Author(s):  
Matthew McKenzie ◽  
David Betts ◽  
Amy Suh ◽  
Kathryn Bui ◽  
London Kim ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hina Shrestha ◽  
Rajni Bala ◽  
Sandeep Arora

The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery.


2013 ◽  
Vol 63 (3) ◽  
pp. 335-358 ◽  
Author(s):  
Gursalkar Tejashri ◽  
Bajaj Amrita ◽  
Jain Darshana

Abstract Nanosponges are a novel class of hyper-crosslinked polymer based colloidal structures consisting of solid nanoparticles with colloidal sizes and nanosized cavities. These nano-sized colloidal carriers have been recently developed and proposed for drug delivery, since their use can solubilize poorly water-soluble drugs and provide prolonged release as well as improve a drug’s bioavailability by modifying the pharmacokinetic parameters of actives. Development of nanosponges as drug delivery systems, with special reference to cyclodextrin based nanosponges, is presented in this article. In the current review, attempts have been made to illustrate the features of cyclodextrin based nanosponges and their applications in pharmaceutical formulations. Special emphasis has been placed on discussing the methods of preparation, characterization techniques and applications of these novel drug delivery carriers for therapeutic purposes. Nanosponges can be referred to as solid porous particles having a capacity to load drugs and other actives into their nanocavity; they can be formulated as oral, parenteral, topical or inhalation dosage forms. Nanosponges offer high drug loading compared to other nanocarriers and are thus suitable for solving issues related to stability, solubility and delayed release of actives. Controlled release of the loaded actives and solubility enhancement of poorly water-soluble drugs are major advantages of nanosponge drug delivery systems.


2016 ◽  
Vol 19 (2) ◽  
pp. 208 ◽  
Author(s):  
Meiyan Yang ◽  
Wei Gong ◽  
Yuli Wang ◽  
Li Shan ◽  
Ying Li ◽  
...  

The formulation development for poorly soluble drugs still remains a challenge. Supersaturating drug delivery systems (SDDS) or drug delivery systems based on supersaturating provide a promising way to improve the oral bioavailability of poorly water-soluble drugs. In supersaturable formulations, drug concentration exceeds the equilibrium solubility when exposed to gastrointestinal fluids, and the supersaturation state is maintained long enough to be absorbed, resulting in compromised bioavailability. In this article, the mechanism of generating and maintaining supersaturation and the evaluation methods of supersaturation assays are discussed. Recent advances in different drug delivery systems based on supersaturating are the focus and are discussed in detail.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


Sign in / Sign up

Export Citation Format

Share Document