Value of diffusion-tensor imaging and fiber tractography in the diagnosis and follow-up of Marchiafava–Bignami disease

2010 ◽  
Vol 73 (2) ◽  
pp. e41-e43
Author(s):  
Sebastián Remollo ◽  
Josep Puig ◽  
María Aguirregomozcorta ◽  
Jordi Gich ◽  
Gerard Blasco ◽  
...  
2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


2017 ◽  
Vol 41 (5) ◽  
pp. 507-511
Author(s):  
Sang Yoon Lee ◽  
Si Hyun Kang ◽  
Don-Kyu Kim ◽  
Kyung Mook Seo ◽  
Hee Joon Ro ◽  
...  

Background:After amputation, the brain is known to be reorganized especially in the primary motor cortex. We report a case to show changes in the corticospinal tract in a patient with serial bilateral transtibial amputations using diffusion tensor imaging.Case Description and Methods:A 78-year-old man had a transtibial amputation on his left side in 2008 and he underwent a right transtibial amputation in 2011. An initial brain magnetic resonance imaging with a diffusion tensor imaging was performed before starting rehabilitation on his right transtibial prosthesis, and a follow-up magnetic resonance imaging with diffusion tensor imaging was performed 2 years after this.Findings and Outcomes:In the initial diffusion tensor imaging, the number of fiber lines in his right corticospinal tract was larger than that in his left corticospinal tract. At follow-up diffusion tensor imaging, there was no definite difference in the number of fiber lines between both corticospinal tracts.Conclusion:We found that side-to-side corticospinal tract differences were equalized after using bilateral prostheses.Clinical relevanceThis case report suggests that diffusion tensor imaging tractography could be a useful method to understand corticomotor reorganization after using prosthesis in transtibial amputation.


2008 ◽  
Vol 38 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Gustav Andreisek ◽  
Lawrence M. White ◽  
Andrea Kassner ◽  
George Tomlinson ◽  
Marshall S. Sussman

2016 ◽  
Vol 17 (4) ◽  
pp. 483-490 ◽  
Author(s):  
Erin N. Kiehna ◽  
Elysa Widjaja ◽  
Stephanie Holowka ◽  
O. Carter Snead ◽  
James Drake ◽  
...  

OBJECT Hemispherectomy for unilateral, medically refractory epilepsy is associated with excellent long-term seizure control. However, for patients with recurrent seizures following disconnection, workup and investigation can be challenging, and surgical options may be limited. Few studies have examined the role of repeat hemispherotomy in these patients. The authors hypothesized that residual fiber connections between the hemispheres could be the underlying cause of recurrent epilepsy in these patients. Diffusion tensor imaging (DTI) was used to test this hypothesis, and to target residual connections at reoperation using neuronavigation. METHODS The authors identified 8 patients with recurrent seizures following hemispherectomy who underwent surgery between 1995 and 2012. Prolonged video electroencephalography recordings documented persistent seizures arising from the affected hemisphere. In all patients, DTI demonstrated residual white matter association fibers connecting the hemispheres. A repeat craniotomy and neuronavigation-guided targeted disconnection of these residual fibers was performed. Engel class was used to determine outcome after surgery at a minimum of 2 years of follow-up. RESULTS Two patients underwent initial hemidecortication and 6 had periinsular hemispherotomy as their first procedures at a median age of 9.7 months. Initial pathologies included hemimegalencephaly (n = 4), multilobar cortical dysplasia (n = 3), and Rasmussen's encephalitis (n = 1). The mean duration of seizure freedom for the group after the initial procedure was 32.5 months (range 6–77 months). In all patients, DTI showed limited but definite residual connections between the 2 hemispheres, primarily across the rostrum/genu of the corpus callosum. The median age at reoperation was 6.8 years (range 1.3–14 years). The average time taken for reoperation was 3 hours (range 1.8–4.3 hours), with a mean blood loss of 150 ml (range 50–250 ml). One patient required a blood transfusion. Five patients are seizure free, and the remaining 3 patients are Engel Class II, with a minimum follow-up of 24 months for the group. CONCLUSIONS Repeat hemispherotomy is an option for consideration in patients with recurrent intractable epilepsy following failed surgery for catastrophic epilepsy. In conjunction with other modalities to establish seizure onset zones, advanced MRI and DTI sequences may be of value in identifying patients with residual connectivity between the affected and unaffected hemispheres. Targeted disconnection of these residual areas of connectivity using neuronavigation may result in improved seizure outcomes, with minimal and acceptable morbidity.


Neurosurgery ◽  
2021 ◽  
Author(s):  
Fraser Henderson Jr ◽  
Drew Parker ◽  
Anupa A Vijayakumari ◽  
Mark Elliott ◽  
Timothy Lucas ◽  
...  

Abstract BACKGROUND A limitation of diffusion tensor imaging (DTI)-based tractography is peritumoral edema that confounds traditional diffusion-based magnetic resonance metrics. OBJECTIVE To augment fiber-tracking through peritumoral regions by performing novel edema correction on clinically feasible DTI acquisitions and assess the accuracy of the fiber-tracks using intraoperative stimulation mapping (ISM), task-based functional magnetic resonance imaging (fMRI) activation maps, and postoperative follow-up as reference standards. METHODS Edema correction, using our bi-compartment free water modeling algorithm (FERNET), was performed on clinically acquired DTI data from a cohort of 10 patients presenting with suspected high-grade glioma and peritumoral edema in proximity to and/or infiltrating language or motor pathways. Deterministic fiber-tracking was then performed on the corrected and uncorrected DTI to identify tracts pertaining to the eloquent region involved (language or motor). Tracking results were compared visually and quantitatively using mean fiber count, voxel count, and mean fiber length. The tracts through the edematous region were verified based on overlay with the corresponding motor or language task-based fMRI activation maps and intraoperative ISM points, as well as at time points after surgery when peritumoral edema had subsided. RESULTS Volume and number of fibers increased with application of edema correction; concordantly, mean fractional anisotropy decreased. Overlay with functional activation maps and ISM-verified eloquence of the increased fibers. Comparison with postsurgical follow-up scans with lower edema further confirmed the accuracy of the tracts. CONCLUSION This method of edema correction can be applied to standard clinical DTI to improve visualization of motor and language tracts in patients with glioma-associated peritumoral edema.


2015 ◽  
Vol 36 (8) ◽  
pp. 1558-1564 ◽  
Author(s):  
B.F.M. Rijken ◽  
A. Leemans ◽  
Y. Lucas ◽  
K. van Montfort ◽  
I.M.J. Mathijssen ◽  
...  

Author(s):  
Bin Chen ◽  
John Moreland

Magnetic resonance diffusion tensor imaging (DTI) is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The water diffusivity inside of biological tissues is characterized by the diffusion tensor, a rank-2 symmetrical 3×3 matrix, which consists of six independent variables. The diffusion tensor contains much information of diffusion anisotropy. However, it is difficult to perceive the characteristics of diffusion tensors by looking at the tensor elements even with the aid of traditional three dimensional visualization techniques. There is a need to fully explore the important characteristics of diffusion tensors in a straightforward and quantitative way. In this study, a virtual reality (VR) based MR DTI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. The VR application will utilize brain image visualization techniques including surface, volume, streamline and streamtube rendering, and use head tracking and wand for navigation and interaction, the application will allow the user to switch between different modalities and visualization techniques, as well making point and choose queries. The main purpose of the application is for basic research and clinical applications with quantitative and accurate measurements to depict the diffusivity or the degree of anisotropy derived from the diffusion tensor.


2012 ◽  
Vol 81 (7) ◽  
pp. e775-e782 ◽  
Author(s):  
Roman Guggenberger ◽  
Patrick Eppenberger ◽  
Daniel Markovic ◽  
Daniel Nanz ◽  
Avneesh Chhabra ◽  
...  

2017 ◽  
Vol 79 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Yuko KONISHI ◽  
Hiroyuki SATOH ◽  
Yasuyoshi KUROIWA ◽  
Mizuki KUSAKA ◽  
Atsushi YAMASHITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document