scholarly journals MON-252 BIOELECTRICAL IMPEDANCE ANALYSIS VERSUS PHYSICIAN ADJUSTMENT IN ACUTE KIDNEY INJURY PATIENTS; WHICH ONE CAN HELP REDUCE INTRADIALYTIC HYPOTENSION

2019 ◽  
Vol 4 (7) ◽  
pp. S402
Author(s):  
T. Trakarnvanich ◽  
N. Kamjohnjiraphun ◽  
S. Kurathong
Author(s):  
Dinna N. Cruz ◽  
Anna Giuliani ◽  
Claudio Ronco

Acute kidney injury (AKI) occurring during heart failure (HF) has been labelled cardiorenal syndrome (CRS) type 1. CRS is defined as a group of ‘disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other’. This consensus definition was proposed by the Acute Dialysis Quality Initiative, with the aim to standardize those disorders where cardiac and renal diseases coexist. Five subtypes have been proposed, according to which organ is affected first (cardiac vs renal) and whether the dysfunction is acute or chronic. Another subtype which includes systemic conditions leading to both heart and kidney dysfunction is also described.The term ‘worsening renal function’ has been regularly used to describe the acute and/or subacute changes that occur in the kidneys following HF. However, the AKI classification according to the current consensus definition better represents the entire spectrum of AKI in the setting of HF.The pathophysiology of heart–kidney interaction is complex and still poorly understood. Factors beyond the classic haemodynamic mechanisms appear to be involved: neurohormonal activation, venous congestion, and inflammation have all been implicated.Diuretics are still a cornerstone in the management of HF. Intravenous administration by bolus or continuous infusion appears to be equally efficacious. Biomarkers and bioelectrical impedance analysis can be helpful in estimating the real volume overload and may be useful to predict and avoid AKI. The role of ultrafiltration remains controversial, and it is currently recommended only for diuretic-resistant patients as it has not been associated with better outcomes. The occurrence of AKI during HF is associated with substantially greater short- and long-term mortality.


2021 ◽  
Vol 6 (4) ◽  
pp. S52
Author(s):  
D. BASNAYAKE ◽  
A. Nayanamali ◽  
H. Amarathunga ◽  
N. Erandika ◽  
J. Pathiraja ◽  
...  

1999 ◽  
Vol 19 (8) ◽  
pp. 1179-1188 ◽  
Author(s):  
Sufia Islam ◽  
Iqbal Kabir ◽  
Mohammad A. Wahed ◽  
Michael I. Goran ◽  
Dilip Mahalanabis ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Ryo Miyachi ◽  
Nana Koike ◽  
Suzu Kodama ◽  
Junya Miyazaki

BACKGROUND: Although trunk muscles are involved in many important functions, evaluating trunk muscle strength is not an easy task. If trunk muscle mass and thickness could be used as indicators of trunk muscle strength, the burden of measurement would be reduced, but the relationship between trunk muscle strength and trunk muscle mass and thickness has not been clarified. OBJECTIVE: The purpose of this study was to clarify the relationship between trunk muscle strength and trunk muscle mass by bioelectrical impedance analysis and trunk muscle thickness by ultrasound imaging in healthy adults. METHODS: One hundred and twenty-one healthy university students were included in this study. Trunk flexion/extension muscle strength and trunk muscle mass by bioelectrical impedance analysis, and trunk muscle thickness by ultrasound imaging were measured. RESULTS: Both trunk flexion strength and trunk extension strength were significantly correlated with trunk muscle mass and oblique and rectus abdominis muscle thickness. Multiple regression analysis showed that trunk extension muscle strength had an independent relationship with trunk muscle mass. CONCLUSIONS: This study demonstrated that trunk muscle mass or trunk muscle thickness can be used as an alternative means for evaluating trunk muscle strength, making the evaluation of trunk muscles less burdensome.


Sign in / Sign up

Export Citation Format

Share Document