Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry

2013 ◽  
Vol 26 ◽  
pp. 101-104 ◽  
Author(s):  
Lin Yu ◽  
Jizhou Duan ◽  
Xiangqian Du ◽  
Yanliang Huang ◽  
Baorong Hou
2012 ◽  
Vol 610-613 ◽  
pp. 243-248
Author(s):  
Xin Wang ◽  
Jin Xu ◽  
Cheng Sun

Corrosion behavior of steel Q235 was investigated during natural evaporation in soils with and without sulfate reducing bacteria (SRB) by microbiological analysis, electrochemical impedance spectroscopy (EIS), energy dispersive X-ray analysis (EDXA) and electron-probe X-ray microanalysis (EPMA). The results show that during natural evaporation, oxygen content increases, amounts of SRB decrease, and the corrosion rates of steel Q235 increase with decreasing humidity of soils with and without SRB. Increments of the corrosion rates are much bigger in soils with SRB than those without SRB.


2011 ◽  
Vol 368-373 ◽  
pp. 42-47
Author(s):  
Fu Shao Li ◽  
Mao Zhong An ◽  
Dong Xia Duan

Corrosion behaviors of low nickel alloy high strength steel (LNAHSS) was studied by electrochemical impedance spectroscopy and scanning electron microscopy when the coupons of LNAHSS were exposed to the seawater culture media. As the results, LNAHSS was uniformly corroded in the fresh sterilized culture medium in a mode of active dissolution; in the culture medium with sulfate-reducing bacteria (SRB), LNAHSS was protected by the iron sulfides layer to some extent in the early stage of exposure, but severely localized corrosion subsequently occurred resulting from the localized breakdown of iron sulfides layer. So, in risks estimation, special precautions should be taken when LNAHSS serves in the environments containing SRB as the localized area can become the tress raiser.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan-Yu Cui ◽  
Yong-Xiang Qin ◽  
Qing-Miao Ding ◽  
Yu-Ning Gao

Abstract Background At present, microorganism has been considered as important factors that threaten to buried pipelines with disbonded coatings. Aiming at the problem of unknown corrosion mechanism of sulfate-reducing bacteria (SRB), a series of studies have been carried out in this paper. Spectrophotometer and fluorescent labeling technology are used to study the growth and attachment of SRB in the simulated soil solution. The corrosion behavior of X80 pipeline steel with or without SRB was researched by electrochemical methods such as open circuit potential, dynamic potential polarization curve, and electrochemical impedance spectroscopy. The microscopic morphology of the corrosion products on the surface was observed with a scanning electron microscope (SEM), and the element content of the corrosion products on the surface of the sample after corrosion was observed using X-ray energy spectrum (EDS) analysis. Results The results showed that the growth and reproduction of SRB caused the pH of the soil simulated solution to increase, which may promote the corrosion of X80 steel. In addition, the cathode reaction of X80 steel in a sterile environment is the reduction of H+, and the main corrosion product is iron oxide. When the soil simulation solution contains SRB, the cathodic reaction is controlled by both H+ reduction and sulfide depolarization reactions, and FeS appears in the corrosion products. Conclusion Although the life cycle of SRB is only about 14 days, the corrosion of X80 steel is greatly promoted by SRB, and even causes corrosion perforation, which will bring huge economic losses and serious safety hazards.


2021 ◽  
Vol 225 ◽  
pp. 05001
Author(s):  
Vladimir Vigdorovich ◽  
Liudmila Tsygankova ◽  
Natalia Shel ◽  
Nedal Alshikha

The universality of inhibitors is understood as their ability to inhibit several types of corrosion attack: hydrogen sulfide and carbon dioxide corrosion, hydrogen diffusion into metal, development of sulfate-reducing and other types of bacteria, negative impact on the mechanical properties of metals. Indicators of universalism of new inhibitor have been studied. Producer of the inhibiting compositions is Limited Liability Company «INCORGAZ» (S-Petersburg, Russia). The efficacy of the inhibitor in the concentration of 25 - 200 mg/L has been studied with respect to carbon steel in a highly mineralized chloride medium (pH= 6) and NACE medium (5 g/L NaCl, 0.25 g/L CH3COOH, pH =3.5) containing H2S (50-400 mg/L) and CO2 (1at) separately and together. The bactericidal properties of the inhibitor were studied with respect to sulfate-reducing bacteria in the Postgate medium. The investigations were carried out by the methods of linear polarization resistance, electrochemical impedance spectroscopy, gravimetry, potentiodynamic polarization. The protective effectiveness of the inhibitor reaches 80% in the presence of CO2 and 90% in hydrogen sulphide environments. The inhibitor repeatedly reduces the number of sulfate-reducing bacteria and the production of biogenic hydrogen sulfide and inhibits the diffusion of hydrogen into steel.


2013 ◽  
Vol 785-786 ◽  
pp. 38-41
Author(s):  
Wei Wei Lin ◽  
Hong Hua Ge ◽  
Li Zhao ◽  
Xue Juan Wang

Corrosion control of glutaraldehyde biocide for 304 stainless steel in simulated cooling water system containing sulfate-reducing bacteria (SRB) was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results revealed that impedance values of stainless steel electrode increased gradually while the passive current densities decreased with the increasing concentration of glutaraldehyde. The biocide improved good anti-corrosion performance to stainless steel in bacteria system. The impedance value |Z|0.05 increased from 19.72 kΩ·cm2 to 33.77 kΩ·cm2, and the passive current density reduced from 0.93 μA·cm-2 to 0.16 μA·cm-2 when the glutaraldehyde concentration reached 80 mg/L.


Sign in / Sign up

Export Citation Format

Share Document