Poly(Δ4,4′-dicyclopenta[2,1-b:3,4-b′]dithiophene–co-3,4-ethylenedioxythiophene): Electrochemically generated low band gap conducting copolymers

2005 ◽  
Vol 51 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Kavithaa Loganathan ◽  
Peter G. Pickup
2019 ◽  
Vol 8 (4) ◽  
pp. 232-252
Author(s):  
Priyanka Thakral ◽  
Vimal Rarh ◽  
Ashok Kumar Bakhshi

2005 ◽  
Vol 155 (3) ◽  
pp. 618-622 ◽  
Author(s):  
Chun-Guey Wu ◽  
Chnug-Wei Hsieh ◽  
Ding-Chou Chen ◽  
Shinn-Jen Chang ◽  
Kuo-Yu Chen

2017 ◽  
Vol 16 (5) ◽  
pp. 123-125 ◽  
Author(s):  
Kota OTSUKI ◽  
Yoshihiro HAYASHI ◽  
Susumu KAWAUCHI

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 484
Author(s):  
Matthias Schuster ◽  
Dominik Stapf ◽  
Tobias Osterrieder ◽  
Vincent Barthel ◽  
Peter J. Wellmann

Copper indium gallium sulfo-selenide (CIGS) based solar cells show the highest conversion efficiencies among all thin-film photovoltaic competition. However, the absorber material manufacturing is in most cases dependent on vacuum-technology like sputtering and evaporation, and the use of toxic and environmentally harmful substances like H2Se. In this work, the goal to fabricate dense, coarse grained CuInSe2 (CISe) thin-films with vacuum-free processing based on nanoparticle (NP) precursors was achieved. Bimetallic copper-indium, elemental selenium and binary selenide (Cu2−xSe and In2Se3) NPs were synthesized by wet-chemical methods and dispersed in nontoxic solvents. Layer-stacks from these inks were printed on molybdenum coated float-glass-substrates via doctor-blading. During the temperature treatment, a face-to-face technique and mechanically applied pressure were used to transform the precursor-stacks into dense CuInSe2 films. By combining liquid phase sintering and pressure sintering, and using a seeding layer later on, issues like high porosity, oxidation, or selenium- and indium-depletion were overcome. There was no need for external Se atmosphere or H2Se gas, as all of the Se was directly in the precursor and could not leave the face-to-face sandwich. All thin-films were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV/vis spectroscopy. Dense CISe layers with a thickness of about 2–3 µm and low band gap energies of 0.93–0.97 eV were formed in this work, which show potential to be used as a solar cell absorber.


2014 ◽  
Vol 14 (8) ◽  
pp. 6422-6426 ◽  
Author(s):  
In Hwan Jung ◽  
Hoyeon Kim ◽  
Wonho Lee ◽  
Byung Jun Jung ◽  
Han Young Woo ◽  
...  

2017 ◽  
Vol 146 ◽  
pp. 73-81 ◽  
Author(s):  
Yeon Hee Ha ◽  
Jisu Hong ◽  
Tae Kyu An ◽  
Hui-Jun Yun ◽  
Kyunghun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document