Electrochemical digital simulation with highly expanding grid four point discretization: Can Crank–Nicolson uncouple diffusion and homogeneous chemical reactions?

2011 ◽  
Vol 56 (16) ◽  
pp. 5707-5716 ◽  
Author(s):  
Francisco Martínez-Ortiz ◽  
Angela Molina ◽  
Eduardo Laborda
Author(s):  
Boris S. Bokstein ◽  
Mikhail I. Mendelev ◽  
David J. Srolovitz

Kinetics considers the rates of different processes. Chemical kinetics refers to the rates and mechanisms of chemical reactions and mass transfer (diffusion). Recall that since thermodynamic equilibrium implies that the rates of all processes are zero, time is not a thermodynamic variable. Rather, time is the new parameter introduced by the consideration of kinetic processes. The rate of a kinetic process and how it depends on time is determined, in part, by the degree of the deviation from equilibrium. If the deviation from equilibrium is small, the rate decreases (without changing sign) as the system approaches equilibrium. If the deviation from equilibrium is large, the situation is more complicated. For example, non-monotonic (including oscillatory) processes are possible. The sign of the rate can change during such processes; that is, the reaction can proceed in one direction and then the other. Additionally, if the deviation from equilibrium is large, small changes to the system can produce very large changes in the rate of the kinetic process (i.e. chaos). Non-equilibrium, yet nearly stationary states of the system can arise (i.e. states that exist for a very long time). Finally, if the deviation from equilibrium is very large, the system can explode (i.e. the process continues to accelerate with time). In this chapter, we develop a formal description of the kinetics of rather simple chemical reactions. Consecutive and parallel reactions will also be considered here. A more general approach (irreversible thermodynamics) will be considered in Chapter 9. In Chapter 10, we examine diffusive processes. Then, in Chapter 11, we consider the kinetics of heterogeneous processes. In order to start the study of chemical reaction kinetics, we must first define what we mean by the rate of reaction. Consider the following homogeneous reaction: . . . Cl2 + 2NO → 2NOCl. (8.1) . . .


Sign in / Sign up

Export Citation Format

Share Document