disk electrode
Recently Published Documents


TOTAL DOCUMENTS

1100
(FIVE YEARS 105)

H-INDEX

59
(FIVE YEARS 6)

2021 ◽  
pp. 139714
Author(s):  
Jai White ◽  
Athira Anil ◽  
Daniel Martín-Yerga ◽  
Germán Salazar-Alvarez ◽  
Gunnar Henriksson ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1469
Author(s):  
Ruslan M. Mensharapov ◽  
Nataliya A. Ivanova ◽  
Dmitry D. Spasov ◽  
Elena V. Kukueva ◽  
Adelina A. Zasypkina ◽  
...  

Pt/C and Pt/x-SnO2/C catalysts (where x is mass content of SnO2) were synthesized using a polyol method. Their kinetic properties towards oxygen reduction reaction were studied by a rotating disk electrode (RDE) technique in a temperature range from 1 to 50 °C. The SnO2 content of catalyst samples was 5 and 10 wt.%. A quick evaluation of the catalyst activity, electrochemical behavior and average number of transferred electrons were performed using the RDE technique. It has been shown that the use of x-SnO2 (through modification of the carbon support) in a binary system together with Pt does not reduce the catalyst activity in the temperature range of 1–30 °C. The temperature rising up to 50 °C resulted in composite catalyst activity reduction at about 30%.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Holly M. Fruehwald ◽  
Olena V. Zenkina ◽  
E. Bradley Easton

Abstract The growing interest in electrochemistry over recent years has sparked an increase in the popularity of various electrochemical techniques, including more advanced methods, that have previously been overlooked in academia and industry. This makes comprehensive hands-on experience in electrochemistry a highly demanded addition to chemistry graduates. However, many students do not receive sufficient training in the theory and experimental design to confidently use and apply various electrochemical techniques throughout their undergraduate, and sometimes even in graduate studies. Here we summarize the theory and practical applications for both rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques. The different modes of operation of rotating ring disk voltammetry, methodologies of data analysis and interpretation as well as the scope of the information that can be extracted from the RDE/RRDE are discussed. Proposed modifications of the laboratory curriculum will allow students to examine and learn valuable information about the reactions on the surface of the electrode/liquid interface. This information will allow chemists to confidently use RDE and RRDE techniques for a wide range of research and development targets. Furthermore, incorporating these techniques into existing chemistry laboratories will help chemistry educators to enrich the undergraduate chemistry curriculum and improve students’ learning outcomes.


Author(s):  
Christopher Tang ◽  
Lisa Housel ◽  
Cynthia Huang ◽  
Wenzao Li ◽  
Lei Wang ◽  
...  

Abstract Understanding the current response at an electrode from suspended solid particles in an electrolyte is crucial for developing materials to be used in semi-solid electrodes for energy storage applications. Here, an analytical model is proposed to predict and understand the current response from non-disintegrable solid particles at a rotating disk electrode. The current is shown to be limited by a combination of ion diffusion within the solid particle and the mean residence time of the particle at the rotating disk electrode. This results in a relationship between current and angular frequency of I∝ω^(3/4), instead of the classical I∝ω^(1/2) predicted by Levich theory. Specifically, the current response of Li4Ti5O12 (LTO) microparticles suspended in a non-aqueous electrolyte of lithium hexafluorophosphate (LiPF6) in ethylene carbonate: diethyl carbonate (EC:DEC) was determined experimentally and compared favorably with predictions from the proposed analytical model using fitting parameters consistent with the experimental conditions.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7752
Author(s):  
Eunjin Jwa ◽  
Mijin Kim ◽  
Ji-Hyung Han ◽  
Namjo Jeong ◽  
Hyun-Chul Kim ◽  
...  

Decreasing the Pt loading and surface area of the cathode was found to accelerate the hydrogen evolution reaction in microbial electrolysis cells (MEC) at low substrate concentrations. The experimental wire cathode used in this study had a reduced Pt loading of 20 µg Pt/cm2 and only 14% of the surface area of the control disk-type cathode. With the wire cathodes, peak current densities of 33.1 ± 2.3 A/m2 to 30.4 ± 0.5 A/m2 were obtained at substrate concentrations of 0.4 g/L and 1.0 g/L, respectively, which were 5.4 to 6.2 times higher than those obtained with the disk electrode (5.1–5.7 A/m2). The higher cathode overpotentials and higher current densities obtained with the wire electrode compared to those observed with the disk electrode were advantageous for hydrogen recovery, energy recovery efficiencies, and the hydrogen volume produced (8.5 ± 1.2 mL at 0.4 g/L to 23.0 ± 2.2 mL at 1.0 g/L with the wire electrode; 6.8 ± 0.4 mL at 0.4 g/L to 21.8 ± 2.2 mL at 1.0 g/L with the disk electrode). Therefore, the wire electrode, which used only 0.6% of the Pt catalyst amount in typical disk-type electrodes (0.5 mg Pt/cm2), was effective at various substrate concentrations. The results of this study are very promising because the capital cost of the MEC reactors can be greatly reduced if the wire-type electrodes with ultralow Pt loading are utilized in field applications.


Author(s):  
Milivoj Lovrić

Cyclic staircase voltammograms of a simple, reversible oxidation on the rotating disk electrode is analysed by the digital simulation. It is demonstrated that the peak currents and potentials depend on the single dimensionless variable that considers nonlinear relationship between peak currents and the potential increment. The reverse, cathodic branch of voltammograms depends on this variable differently than the anodic one.


Sign in / Sign up

Export Citation Format

Share Document