Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture

2018 ◽  
Vol 268 ◽  
pp. 234-240 ◽  
Author(s):  
Xiaofei Liu ◽  
Dong Wang ◽  
Bingsen Zhang ◽  
Chen Luan ◽  
Tingting Qin ◽  
...  
2021 ◽  
Vol 126 ◽  
pp. 107013
Author(s):  
Chloé Bizot ◽  
Marie-Anne Blin ◽  
Pierre Guichard ◽  
Jonathan Hamon ◽  
Vincent Fernandez ◽  
...  

2010 ◽  
Vol 22 (9) ◽  
pp. 2857-2863 ◽  
Author(s):  
A. S. Prakash ◽  
P. Manikandan ◽  
K. Ramesha ◽  
M. Sathiya ◽  
J-M. Tarascon ◽  
...  

Author(s):  
Roozbeh Pouyanmehr ◽  
Morteza Pakseresht ◽  
Reza Ansari ◽  
Mohammad Kazem Hassanzadeh-Aghdam

One of the limiting factors in the life of lithium-ion batteries is the diffusion-induced stresses on their electrodes that cause cracking and consequently, failure. Therefore, improving the structure of these electrodes to be able to withstand these stresses is one of the ways that can extend the life of the batteries as well as improve their safety. In this study, the effects of adding graphene nanoplatelets and microparticles into the active plate and current collectors, respectively, on the diffusion induced stresses in both layered and bilayered electrodes are numerically investigated. The micromechanical models are employed to predict the mechanical properties of both graphene nanoplatelet-reinforced Sn-based nanocomposite active plate and silica microparticle-reinforced copper composite current collector. The effect of particle size and volume fraction in the current collector on diffusion induced stresses has been studied. The results show that in electrodes with a higher volume fraction of particles and smaller particle radii, decreased diffusion induced stresses in both the active plate and the current collector are observed. These additions will also result in a significant decrease in the bending of the electrode.


Nanoscale ◽  
2021 ◽  
Vol 13 (37) ◽  
pp. 15624-15630
Author(s):  
Jinyun Liu ◽  
Ting Zhou ◽  
Yan Wang ◽  
Tianli Han ◽  
Chaoquan Hu ◽  
...  

A novel nanosphere-confined one-dimensional yolk–shell anode is developed for Li-ion batteries.


2020 ◽  
Vol 56 (93) ◽  
pp. 14665-14668
Author(s):  
Matthew Chebuske ◽  
Seiichiro Higashiya ◽  
Spencer Flottman ◽  
Hassaram Bakhru ◽  
Byron Antonopoulos ◽  
...  

Non-destructive Li nuclear reaction analyses were used to profile the Li distribution at the surfaces of graphitic Li-ion battery anodes.


2020 ◽  
Vol 5 (11) ◽  
pp. 1453-1466
Author(s):  
Zhen-Kun Tang ◽  
Yu-Feng Xue ◽  
Gilberto Teobaldi ◽  
Li-Min Liu

Oxygen vacancies can promote Li-ion diffusion, reduce the charge transfer resistance, and improve the capacity and rate performance of Li-ion batteries. However, oxygen vacancies can also lead to accelerated degradation of the cathode material structure, and lead to phase transition etc.


Sign in / Sign up

Export Citation Format

Share Document