Label-free physical and electrochemical imaging of latent fingerprints by water and SECM

2020 ◽  
Vol 350 ◽  
pp. 136373 ◽  
Author(s):  
Mi Shi ◽  
Qianhui Wei ◽  
Lu Tian ◽  
Xin Du ◽  
Xueji Zhang ◽  
...  
2012 ◽  
Vol 24 (5) ◽  
pp. 1027-1032 ◽  
Author(s):  
Gang Qin ◽  
Meiqin Zhang ◽  
Ting Zhang ◽  
Yang Zhang ◽  
Mike McIntosh ◽  
...  

2017 ◽  
Vol 89 (8) ◽  
pp. 4468-4473 ◽  
Author(s):  
Benjamin Figueroa ◽  
Yikai Chen ◽  
Kyla Berry ◽  
Andrew Francis ◽  
Dan Fu

2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


2019 ◽  
Author(s):  
Clara M. Agapie ◽  
Melissa Sampson ◽  
William Gee

The work describes a new chemical means of visualising latent fingerprints (fingermarks) using tropolone. Tropolone reacts with amino acids within the fingermark residue to form adducts that absorb UV radiation. These adducts provide useful contrast on highly-fluorescent prous surfaces will illuminated with UV radiation. The conjugated seven-membered ring of the tropolone adduct can be reacted further diazonium salts, which is demonstrated here with formation of two dyes. The methodology is extremely rapid, occurring in minutes with mild heating, and can be applied before ninhydrin in a chemical detection sequence. <br>


Sign in / Sign up

Export Citation Format

Share Document