chemical imaging
Recently Published Documents


TOTAL DOCUMENTS

1175
(FIVE YEARS 253)

H-INDEX

65
(FIVE YEARS 9)

2021 ◽  
Author(s):  
Lixue Shi ◽  
Aleksandra Klimas ◽  
Brendan Gallagher ◽  
Zhangyu Cheng ◽  
Feifei Fu ◽  
...  

Stimulated Raman scattering (SRS) microscopy is an emerging technology that provides high chemical specificity for endogenous biomolecules and can circumvent common constraints of fluorescence microscopy including limited capabilities to probe small biomolecules and difficulty resolving many colors simultaneously due to spectral overlap. However, the resolution of SRS microscopy remains governed by the diffraction limit. To overcome this, we describe a new technique called Molecule Anchorable Gel-enabled Nanoscale Imaging of Fluorescence and stImulatEd Raman Scattering microscopy (MAGNIFIERS), that integrates SRS microscopy with expansion microscopy (ExM). ExM is a powerful strategy providing significant improvement in imaging resolution by physical magnification of hydrogel-embedded preserved biological specimens. MAGNIFIERS offers chemical-specific nanoscale imaging with sub-50 nm resolution and has scalable multiplexity when combined with multiplex Raman probes and fluorescent labels. We used MAGNIFIERS to visualize nanoscale features in a label-free manner with C-H vibration of proteins, lipids and DNA in a broad range of biological specimens, from mouse brain, liver and kidney to human lung organoid. In addition, we applied MAGNIFIERS to track nanoscale features of protein synthesis in protein aggregates using metabolic labeling of small metabolites. Finally, we used MAGNIFIERS to demonstrate 8-color nanoscale imaging in an expanded mouse brain section. Overall, MAGNIFIERS is a valuable platform for super-resolution label-free chemical imaging, high-resolution metabolic imaging, and highly multiplexed nanoscale imaging, thus bringing SRS to nanoscopy.


2021 ◽  
Author(s):  
Mingu Kang ◽  
Hyun Woo Kim ◽  
Elham Oleiki ◽  
Yeonjeong Koo ◽  
Hyeongwoo Lee ◽  
...  

Abstract A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contaminations in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm-1 is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies.


Author(s):  
xueliang li ◽  
shibin liu ◽  
jie tan ◽  
chunsheng wu

Light-addressable potentiometric sensor (LAPS) is an electrochemical sensor based on the field-effect principle of semiconductor. It is able to sense the change of Nernst potential on the sensor surface, and the measuring area can be controlled by the illumination. Due to the unique light-addressable ability of LAPS, the chemical imaging system constructed with LAPS can realize the two-dimensional image distribution detection of chemical/biomass. In this paper, the advantages of LAPS as sensing unit of microelectrochemical analysis system are summarized. Then, the greatest development of LAPS analysis system is explained and discussed. Especially, this paper focused on the research of ion diffusion, enzymatic reaction, microbial metabolism and droplet microfluidics by using LAPS analysis system. Finally, the development trends and prospects of LAPS analysis system are illustrated.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katerina Kanevche ◽  
David J. Burr ◽  
Dennis J. Nürnberg ◽  
Pascal K. Hass ◽  
Andreas Elsaesser ◽  
...  

AbstractAlthough techniques such as fluorescence-based super-resolution imaging or confocal microscopy simultaneously gather both morphological and chemical data, these techniques often rely on the use of localized and chemically specific markers. To eliminate this flaw, we have developed a method of examining cellular cross sections using the imaging power of scattering-type scanning near-field optical microscopy and Fourier-transform infrared spectroscopy at a spatial resolution far beyond the diffraction limit. Herewith, nanoscale surface and volumetric chemical imaging is performed using the intrinsic contrast generated by the characteristic absorption of mid-infrared radiation by the covalent bonds. We employ infrared nanoscopy to study the subcellular structures of eukaryotic (Chlamydomonas reinhardtii) and prokaryotic (Escherichia coli) species, revealing chemically distinct regions within each cell such as the microtubular structure of the flagellum. Serial 100 nm-thick cellular cross-sections were compiled into a tomogram yielding a three-dimensional infrared image of subcellular structure distribution at 20 nm resolution. The presented methodology is able to image biological samples complementing current fluorescence nanoscopy but at less interference due to the low energy of infrared radiation and the absence of labeling.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3986
Author(s):  
Liliana Rosu ◽  
Cristian-Catalin Gavat ◽  
Dan Rosu ◽  
Cristian-Dragos Varganici ◽  
Fanica Mustata

The paper describes the photochemical stability of a commercial triphenodioxazine dye (Reactive Blue_204) linked onto a cotton fabric. Preliminary studies have shown that as a result of irradiation, the dye and its photodegradation products can pass directly onto the skin under conditions that mimic human perspiration and cause side-effects. The cotton dyed fabric was photo irradiated at different time intervals. Standard methods were employed to evaluate the color strength at various levels of pH, temperature, dyeing contact time, and salt concentration. The influence of UV radiation at different doses (λ > 300 nm) on the structural and color modifications of the dyed cotton fabrics was studied. Structural modifications before and after irradiation were compared by applying FTIR, UV–Vis, and near infrared chemical imaging (NIR–CI) techniques. Color modifications were investigated with the CIELAB system. Color differences significantly increased with the irradiation dose. High irradiation doses caused changes in the dye structure.


Author(s):  
Sven Ritschar ◽  
Elisabeth Schirmer ◽  
Benedikt Hufnagl ◽  
Martin G. J. Löder ◽  
Andreas Römpp ◽  
...  

AbstractAcquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sections is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemical analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses in E. fetida, which can be applied to other model organisms as well.


2021 ◽  
Author(s):  
Johan Decelle ◽  
Ehsan Kayal ◽  
Estelle Bigeard ◽  
Benoit Gallet ◽  
Jeremy Bougoure ◽  
...  

Parasites are widespread and diverse in the oceanic plankton, and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and whether the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the parasite Amoebophrya (Syndiniales) during intracellular infection (e.g. 200-fold increase of mitochondrion volume), particularly following digestion of nutrient-rich host chromosomes. Some of these changes are also found in the apicomplexan parasites (e.g. sequential acristate and cristate mitochondrion, switch from glycolysis to TCA), thus underlining key evolutionary-conserved mechanisms. In the algal host, energy-producing organelles (chloroplast) remain intact during most of the infection, but sugar reserves diminish while lipid droplets increase. Thus, rapid infection of the host nucleus could be a zombifying strategy to digest nutrient-rich chromosomes and escape cytoplasmic defense while benefiting from the maintained C-energy production of the host cell.


Sign in / Sign up

Export Citation Format

Share Document