Unraveling the role of electrolytes during electrochemical oxidation by differential electrochemical mass spectrometry

2021 ◽  
pp. 138521
Author(s):  
Ehab Mostafa ◽  
Helmut Baltruschat ◽  
Sergi Garcia-Segura
2003 ◽  
Vol 28 (2) ◽  
pp. 87-92 ◽  
Author(s):  
K. Bergamaski ◽  
J. F. Gomes ◽  
B. E Goi ◽  
F. C. Nart

The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Oliver C. Watkins ◽  
Preben Selvam ◽  
Reshma Appukuttan Pillai ◽  
Victoria K. B. Cracknell-Hazra ◽  
Hannah E. J. Yong ◽  
...  

Abstract Background Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. Methods Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. Results Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. Conclusions Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.


Sign in / Sign up

Export Citation Format

Share Document