Structural and electrochemical properties of undoped and In3+-doped multi-phase zinc- antimony oxide for a high-performance pseudocapacitor

2021 ◽  
pp. 138773
Author(s):  
Duanghatai Raknual ◽  
Supparat Charoenphon ◽  
Pakpoom Reunchan ◽  
Auttasit Tubtimtae
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Wook Kim ◽  
Seong-Hoon Kang ◽  
Se-Jong Kim ◽  
Seungchul Lee

AbstractAdvanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its requirement of a sufficient amount of training data with correct labels to the network. This often comes as a challenge in many areas where obtaining data and labeling it is extremely labor-intensive. To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to learn the underlying probability distribution of each phase and generate realistic sample points with class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. This presents the high feasibility of using the proposed methodology for fast and precise estimation of phase volume fraction in both industry and academia.


2021 ◽  
pp. 139026
Author(s):  
Manas Ranjan Panda ◽  
Anish Raj Kathribail ◽  
Brindaban Modak ◽  
Supriya Sau ◽  
Dimple P. Dutta ◽  
...  

Author(s):  
Tuan A. Pham ◽  
Melis Sutman

The prediction of shear strength for unsaturated soils remains to be a significant challenge due to their complex multi-phase nature. In this paper, a review of prior experimental studies is firstly carried out to present important pieces of evidence, limitations, and some design considerations. Next, an overview of the existing shear strength equations is summarized with a brief discussion. Then, a micromechanical model with stress equilibrium conditions and multi-phase interaction considerations is presented to provide a new equation for predicting the shear strength of unsaturated soils. The validity of the proposed model is examined for several published shear strength data of different soil types. It is observed that the shear strength predicted by the analytical model is in good agreement with the experimental data, and get high performance compared to the existing models. The evaluation of the outcomes with two criteria, using average relative error and the normalized sum of squared error, proved the effectiveness and validity of the proposed equation. Using the proposed equation, the nonlinear relationship between shear strength, saturation degree, volumetric water content, and matric suction are observed.


ChemSusChem ◽  
2017 ◽  
Vol 10 (20) ◽  
pp. 4056-4065 ◽  
Author(s):  
Shusheng Xu ◽  
Tao Wang ◽  
Yujie Ma ◽  
Wenkai Jiang ◽  
Shuai Wang ◽  
...  

2021 ◽  
Author(s):  
Luke Sibimol ◽  
Manjunath Chatti ◽  
Asha Yadav ◽  
Brittany Kerr ◽  
Jiban Kangsabanik ◽  
...  

Proton-exchange membrane water electrolysers provide many advantages for the energy-efficient production of H<sub>2</sub>, but the current technology relies on high loadings of expensive iridium at the anodes, which are often unstable in operation. To address this, the present work scrutinises the properties of antimony-metal (Co, Mn, Ni, Fe, Ru) oxides synthesised as flat thin films by a solution-based method for the oxygen evolution reaction in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Among the non-noble-metal catalysts, only cobalt-antimony and manganese-antimony oxides demonstrate high stability and reasonable activity under ambient conditions, but slowly lose activity at elevated temperatures. The ruthenium-antimony system is highly active, requiring an overpotential of 0.39 ± 0.03 and 0.34 ± 0.01 V to achieve 10 mA cm<sup>-2</sup> at 24 ± 2 and 80 °C, respectively, and remaining remarkably stable during one-week tests at 80 °C. The <i>S</i>-number for this catalyst is higher than that for the high-performance benchmark Ir-based systems. Density functional theory analysis and physical characterisation reveal that this high stability is supported by the enhanced hybridisation of the oxygen p- and metal d-orbitals induced by antimony, and can arise from two distinct structural scenarios: either formation of an antimonate phase, or nanoscale intermixing of metal and antimony oxide crystallites.


2014 ◽  
Vol 2 (13) ◽  
pp. 4706-4713 ◽  
Author(s):  
Xue-Feng Lu ◽  
Dong-Jun Wu ◽  
Run-Zhi Li ◽  
Qi Li ◽  
Sheng-Hua Ye ◽  
...  

Novel NiCo2O4 NSs@HNRAs are fabricated via a simple and environmental friendly template-assisted electrodeposition followed by thermal annealing and they exhibit predominant electrochemical properties and long-term cycle stability.


2019 ◽  
Vol 48 (31) ◽  
pp. 11749-11762 ◽  
Author(s):  
Xueying Dong ◽  
Yifu Zhang ◽  
Qiushi Wang ◽  
Xiaorong Zhang ◽  
Meng Gao ◽  
...  

Urchin-like Ni3Si2O5(OH)4 hierarchical hollow sphere/GO composites were synthesized, which showed an enhanced electrochemical performance of 165 F g−1 at 0.5 A g−1 and 84% capacity retention after 5000 cycles.


Sign in / Sign up

Export Citation Format

Share Document