hollow spheres
Recently Published Documents


TOTAL DOCUMENTS

2581
(FIVE YEARS 583)

H-INDEX

125
(FIVE YEARS 25)

Author(s):  
Changlin Ding ◽  
Yibao Dong ◽  
Yuanbo Wang ◽  
Jianbing Shi ◽  
Shilong Zhai ◽  
...  

Abstract Acoustic metamaterials (AMMs) and acoustic metasurfaces (AMSs) are artificially structured materials with the unique properties not found in natural materials. We reviewed herein the properties of AMM and AMS that have been designed using the meta-atoms of split hollow spheres (SHSs) and hollow tubes (HTs) or meta-molecules of split hollow tubes (SHTs) with local resonance. AMMs composed of SHSs or HTs display a transmission dip with negative modulus or negative mass density. AMMs composited with SHSs and HTs present a transmission peak and a phase fluctuation in the overlapping resonant frequency region, indicating that they simultaneously have a negative modulus and a negative mass density. Furthermore, the meta-molecule AMMs with SHTs also exhibit double-negative properties. Moreover, the acoustic meta-atoms or meta-molecules can be used to fabricate acoustic topological metamaterials with topologically protected edge states propagation. These meta-atoms and meta-molecules can also attain phase discontinuity near the resonant frequency, and thus they can be used to design AMSs with the anomalous manipulation for acoustic waves. The various tunability of the meta-molecules provides a feasible path to achieve broadband AMS.


2022 ◽  
pp. 18-25
Author(s):  
HONGJUAN WANG ◽  
WEI HU ◽  
OLENA SALIY

Purpose. Study pore size effect and morphology of mesoporous silica on metoprolol tartrate release.Methodology. A sample of hollow mesoporous silicon dioxide with amino-functional groups containing 12.7 wt. % metoprolol tartrate has been investigated as potential carriers for the controlled release of active substance. Studies of the release profiles of metoprolol tartrate were performed under the following conditions: dissolution medium was buffer solution with a pH of 7.4 (phosphate buffer); sampling time: from 0.5 h before 18 h. The metoprolol concentration in the liquid phase was evaluated by a UV-Vis spectrophotometer (Persee TU-190, Beijing, China) by use of quartz cuvettes with an optical path length of 1 cm at a maximum wavelength of 274 nm.Findings. In this work we have studied mesoporous silica as possible carrier to controlled release of metoprolol tartrate, a drug used in the treatment of some diseases of the cardiovascular system. The material for research was a sample of hollow mesoporous silicon dioxide with amino-functional groups 200–400 nm in size and 20–30 nm in shell thickness. A calibrated curve to determine the amount of metoprolol was constructed by determining the absorption dependence of the concentration of metoprolol in the range from 10 to 300 ppm. The same drug concentration was obtained as calculated from the drug release test formula, which concludes that the release of metoprolol is controlled.Originality. The controlled release of a sample of hollow spheres of mesoporous silicon dioxide filled with metoprolol tartrate was studied, which was synthesized by the School of Chemistry and Chemical Engineering, Qilu University of Technology, using a new technology, where hollow spheres of mesoporous silicon dioxide with amino groups were synthesized using CO2 gas bubbles as templates.Practical value. The metoprolol release amount could achieve a 50% release amounts within 1 hour and 90% within 5 hours, indicating that the synthesized mesoporous hollow sphere could achieve controlled drug release, and shows the potential of carriers with stimulus response and targeted therapy.


2022 ◽  
Author(s):  
Zhongliang Jiang ◽  
Fang-Yi Lin ◽  
Kun Jiang ◽  
Han Nguyen ◽  
Chun-Yi Chang ◽  
...  

Mesenchymal stem cells (MSCs)-based therapies have been widely used to promote tissue regeneration and to modulate immune/inflammatory response. The therapeutic potential of MSCs can be further improved by forming multi-cellular spheroids. Meanwhile, hydrogels with macroporous structures are advantageous for improving mass transport properties for the cell-laden matrices. Herein, we report the fabrication of MSC-laden macroporous hydrogel scaffolds through incorporating rapidly dissolvable spherical cell-laden microgels. Dissolvable microgels were fabricated by tandem droplet-microfluidics and thiol-norbornene photopolymerization using a novel fast-degrading macromer poly(ethylene glycol)-norbornene-dopamine (PEGNB-Dopa). The cell-laden microgels were subsequently encapsulated within another bulk hydrogel matrix, whose porous structure was generated efficiently by the rapid degradation of the PEGNB-Dopa microgels. The cytocompatibility of this in situ pore-forming approach was demonstrated with multiple cell types. Furthermore, adjusting the stiffness and cell adhesiveness of the bulk hydrogels afforded the formation of solid cell spheroids or hollow spheres. The assembly of solid or hollow MSC spheroids led to differential activation of AKT pathway. Finally, MSCs solid spheroids formed in situ within the macroporous hydrogels exhibited robust secretion of HGF, VEGF-A, IL-6, IL-8, and TIMP-2. In summary, this platform provides an innovative method for forming cell-laden macroporous hydrogels for a variety of future biomedical applications.


Author(s):  
Jiaqi Yu ◽  
Daoping Cai ◽  
Junhui Si ◽  
Hongbing Zhan ◽  
Qian-Ting Wang

The development of high-performance cathode materials is of great importance for aqueous alkaline Zn batteries (AZBs) but also remains great challenging. Herein, we demonstrate the rational design and synthesis of...


2022 ◽  
Vol 29 (1) ◽  
pp. 013105
Author(s):  
M. A. H. Zosa ◽  
M. Murakami
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document