Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries

2021 ◽  
pp. 139620
Author(s):  
Yongkang An ◽  
Yu Liu ◽  
Shuangshuang Tan ◽  
Fangyu Xiong ◽  
Xiaobin Liao ◽  
...  
2021 ◽  
Vol 2 (3) ◽  
pp. 100354
Author(s):  
Limin Zhou ◽  
Zihe Zhang ◽  
Lianmeng Cui ◽  
Fangyu Xiong ◽  
Qinyou An ◽  
...  

2016 ◽  
Vol 9 (7) ◽  
pp. 2273-2277 ◽  
Author(s):  
Xiaoqi Sun ◽  
Patrick Bonnick ◽  
Victor Duffort ◽  
Miao Liu ◽  
Ziqin Rong ◽  
...  

A Mg full cell with a thiospinel cathode material shows 190 mA h g−1 capacity and relatively stable capacity retention.


2013 ◽  
Vol 25 (27) ◽  
pp. 3722-3726 ◽  
Author(s):  
Feng Wu ◽  
Ning Li ◽  
Yuefeng Su ◽  
Haofang Shou ◽  
Liying Bao ◽  
...  

2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.


2021 ◽  
pp. 103512
Author(s):  
Zaowen Zhao ◽  
Bao Zhang ◽  
Jingtian Zou ◽  
Pengfei Li ◽  
Zihang Liu ◽  
...  

2017 ◽  
Vol 4 (11) ◽  
pp. 1806-1812 ◽  
Author(s):  
Shibing Zheng ◽  
Jinyan Hu ◽  
Weiwei Huang

A novel high-capacity cathode material C4Q/CMK-3 for SIBs shows an initial discharge capacity of 438 mA h g−1 and a capacity retention of 219.2 mA h g−1 after 50 cycles.


Sign in / Sign up

Export Citation Format

Share Document