HIGH POWER PERFORMANCE OF MULTICOMPONENT OLIVINE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.

RSC Advances ◽  
2018 ◽  
Vol 8 (51) ◽  
pp. 28978-28986 ◽  
Author(s):  
Yifang Wu ◽  
Shaokun Chong ◽  
Yongning Liu ◽  
ShengWu Guo ◽  
Pengwei Wang ◽  
...  

C18BF15 was first adopted as a boron source and has demonstrated its clear modification effects, as shown by the high rate capability.


2021 ◽  
Vol 21 (3) ◽  
pp. 1500-1506
Author(s):  
Xiaoyue Cui ◽  
Zhiyuan Tang ◽  
Xiaokai Ma ◽  
Ji Yan

Carbon-coated lithium vanadium phosphate cathode materials were successfully prepared via an ultra-fast microwave irradiation route in 5 min with using activated carbon as the microwave adsorbent. We aimed to utilize this ultra-fast and facile route to shorten the synthesis procedure for obtaining Li3V2(PO4)3/C cathode material with superior rate capability. To characterize the intrinsic crystal structure and exterior architecture morphology of targeted material, X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) in combined with transmission electron microscopy (TEM) were applied in experiment. The role of microwave irradiation treatment time in affecting the crystalline structure and related lithium-storage electrochemical performance is also investigated in detail. For the optimal Li3V2(PO4)3/C material, it delivered a specific discharge capacity of 110.1 mAh g−1 at a 0.2 C charging/discharging rate while hold a superior cycling stability over 50 cycles when tested at a 1 C rate. The ultra-fast synthesis route should pave a new way to save the energy in the preparation of phosphate-based electroactive cathode material.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1137
Author(s):  
Can Wang ◽  
Xunlong Yuan ◽  
Huiyun Tan ◽  
Shuofeng Jian ◽  
Ziting Ma ◽  
...  

LiFePO4 (LFPO)has great potential as the cathode material for lithium-ion batteries; it has a high theoretical capacity (170 m·A·h·g−1), high safety, low toxicity and good economic benefits. However, low conductivity and a low diffusion rate inhibit its future development. To overcome these weaknesses, three-dimensional carbon-coated LiFePO4 that incorporates a high capacity, superior conductivity and low volume expansion enables faster electron transport channels. The use of Cetyltrimethyl Ammonium Bromid (CTAB) modification only requires a simple water bath and sintering, without the need to add a carbon source in the LFPO synthesis process. In this way, the electrode shows excellent reversible capacity, as high as 159.8 m·A·h·g−1 at 2 C, superior rate capability with 97.3 m·A·h·g−1at 5 C and good cycling ability, preserving ~84.2% capacity after 500 cycles. By increasing the ion transport rate and enhancing the structural stability of LFPO nanoparticles, the LFPO-positive electrode achieves excellent initial capacity and cycle life through cost-effective and easy-to-implement carbon coating. This simple three-dimensional carbon-coated LiFePO4 provides a new and simple idea for obtaining comprehensive and high-performance electrode materials in the field of lithium cathode materials.


2019 ◽  
Vol 7 (36) ◽  
pp. 20958-20964 ◽  
Author(s):  
Yudong Zhang ◽  
Hang Li ◽  
Junxiang Liu ◽  
Jicheng Zhang ◽  
Fangyi Cheng ◽  
...  

Nickel-rich LiNi0.90Co0.07Mg0.03O2 cathode material with concentration gradient structure exhibits superior high capacity, high-rate capability and cycling stability.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4872-4879 ◽  
Author(s):  
Mansoo Choi ◽  
Kisuk Kang ◽  
Hyun-Soo Kim ◽  
Young Moo Lee ◽  
Bong-Soo Jin

We report high capacity and rate capability of titanium-added Li3V2(PO4)3 (LVP) as a cathode material for lithium ion batteries (LIBs).


Author(s):  
A. Srinivas Kumar ◽  
T. V. S. L. Satyavani ◽  
M. Senthilkumar ◽  
P. S. V. Subba Rao

Lithium iron phosphate (LiFePO4) for lithium-ion batteries is considered as perfect cathode material for various military applications, especially underwater combat vehicles. For deployment at high rate applications, the low conductivity of LiFePO4 needs to be improved. Cationic substitution of niobium in the native carbon coated LiFePO4 is one of the methods to enhance the conductivity. In the present work, how the niobium doped solid solution could be formed is studied. Nanopowders of LiFePO4/C and Li1−xNbxFePO4/C (x = 0.05, 0.1, 0.15, 0.16) are synthesized from precursors using microwave synthesis. The solid solution formation up to (x = 0.15) Li1−xNbxFePO4/C without impurity phases is confirmed by X-ray diffraction (XRD) pattern and Fourier transform infrared spectroscopic (FTIR) results. Particle distribution is obtained by scanning electron microscope from the synthesized powders. Energy dispersive X-ray spectrometer (EDS) results qualitatively confirmed the presence of niobium. Also, direct current (dc) conductivities are measured using sintered pellets and activation energies are calculated using Arrhenius equation. The dependence of conductivity and activation energy of LiFePO4/C on variation of niobium doping is investigated in this study. CR2032 type coin cells are fabricated with the synthesized materials and subjected to cyclic voltammetry studies, rate capability and cycle life studies. Diffusion coefficients are obtained from electrochemical impedance spectroscopy studies. It is observed that room temperature dc conductivity improved by niobium doping when compared to LiFePO4/C (0.379 × 10−2 S/cm) and is maximum for Li0.9Nb0.1FePO4/C (40.58 × 10−2 S/cm). It is also observed that diffusion coefficient of Li+ in Li0.9Nb0.1FePO4/C (13.306 × 10−9 cm2 s−1) improved by two orders of magnitude in comparison with the pure LiFePO4 (10 − 12 cm2 s−1) and carbon-coated nano LiFePO4/C (0.632 × 10−11 cm2 s−1). Cells with Li0.9Nb0.1FePO4/C are able to deliver useful capacity of around 104 mAh/g at 10 C rate. More than 500 cycles are achieved with Li0.9Nb0.1FePO4/C at 20 C rate.


2017 ◽  
Vol 9 (14) ◽  
pp. 12408-12415 ◽  
Author(s):  
Chaofan Yang ◽  
Xiaosong Zhang ◽  
Mengyi Huang ◽  
Junjie Huang ◽  
Zebo Fang

2017 ◽  
Vol 360 ◽  
pp. 575-584 ◽  
Author(s):  
Juhyeon Ahn ◽  
Dieky Susanto ◽  
Jae-Kyo Noh ◽  
Ghulam Ali ◽  
Byung Won Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document