A high capacity thiospinel cathode for Mg batteries

2016 ◽  
Vol 9 (7) ◽  
pp. 2273-2277 ◽  
Author(s):  
Xiaoqi Sun ◽  
Patrick Bonnick ◽  
Victor Duffort ◽  
Miao Liu ◽  
Ziqin Rong ◽  
...  

A Mg full cell with a thiospinel cathode material shows 190 mA h g−1 capacity and relatively stable capacity retention.

2017 ◽  
Vol 4 (11) ◽  
pp. 1806-1812 ◽  
Author(s):  
Shibing Zheng ◽  
Jinyan Hu ◽  
Weiwei Huang

A novel high-capacity cathode material C4Q/CMK-3 for SIBs shows an initial discharge capacity of 438 mA h g−1 and a capacity retention of 219.2 mA h g−1 after 50 cycles.


Author(s):  
Zhangxian Chen ◽  
Qiuge Zhang ◽  
Weijian Tang ◽  
Zhaoguo Wu ◽  
Juxuan Ding ◽  
...  

Nickel-rich LiNiCoMnO (LNCM811) is a promising lithium-ion battery cathode material, whereas the surface-sensitive issues (i.e., side reaction and oxygen loss) occurring on LNCM811 particles significantly degrade their electrochemical capacity retentions. A uniform LiZrO coating layer can effectively mitigate the problem by preventing these issues. Instead of the normally used weak hydrogen-bonding interaction, we present a covalent interfacial engineering for the uniform LiZrO coating on LiNiCoMnO materials. Results indicate that the strong covalent interactions between citric acid and NiCoMn(OH) precursor effectively promote the adsorption of ZrO coating species on NiCoMn(OH) precursor, which is eventually converted to uniform LiZrO coating layers of about 7 nm after thermal annealing. The uniform LiZrO coating endows LNCM811 cathode materials with an exceptionally high capacity retention of 98.7% after 300 cycles at 1 C. This work shows the great potential of covalent interfacial engineering for improving the electrochemical cycling capability of Ni-rich lithium-ion battery cathode materials.


2021 ◽  
Vol 8 ◽  
Author(s):  
Satyanarayana Maddukuri ◽  
Amey Nimkar ◽  
Munseok S. Chae ◽  
Tirupathi Rao Penki ◽  
Shalom Luski ◽  
...  

Aqueous salt batteries with high concentrations of salt or water in salt aqueous systems have received considerable attention with focus on improving working voltage range and energy density. Here, the effect of NaClO4 salt concentration on the electrochemical performance and stability of tunnel-type Na0.44MnO2 (NMO) cathodes and organic polyimide (PI) derivative anodes was studied. High capacity retention and 100% coulombic efficiency were shown for NMO/PI full cell in saturated NaClO4 electrolyte. A high, stable capacity of 115 mAh/g was achieved for the PI anode material, and the full cell showed a stable capacity of 41 mAh/g at 2C rate for 430 cycles (calculated for the weight of NMO cathode). Even at a fast 5C rate, a discharge capacity of 33 mAh/g was maintained for 2,400 prolonged cycles with nearly 100% efficiency. The full cell device can achieve an average voltage of 1 V with energy density of 24 Wh/kg. This study highlights concentrated sodium perchlorate as a promising electrolyte solution for stabilization of electrodes and enhancement of electrochemical performance in aqueous media.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Ngoc Hung Vu ◽  
Van-Duong Dao ◽  
Hong Ha Thi Vu ◽  
Nguyen Van Noi ◽  
Dinh Trinh Tran ◽  
...  

Herein, we reported the composite structure of LiMnO2 and Li2MnO3 as a low-cost and environmentally benign cathode material. This composite with the main phase of LiMnO2 (90%) was synthesized by hydrothermal method at 220°C from LiOH and Mn(CH3COO)2 precursors. The obtained nanosized LiMnO2-LiMnO3 cathode material exhibits a high capacity of 265 mAh g-1 at C/10. The incorporation of Li2MnO3 into the LiMnO2 phase could stabilize the structure, leading to the improved cycle stability of the cathode. The capacity retention of the cathode was 93% after 80 cycles at C/2. Our results facilitate a potential strategy for developing high-performance cathode materials based on the Li-Mn-O system.


2013 ◽  
Vol 25 (27) ◽  
pp. 3722-3726 ◽  
Author(s):  
Feng Wu ◽  
Ning Li ◽  
Yuefeng Su ◽  
Haofang Shou ◽  
Liying Bao ◽  
...  

2008 ◽  
Vol 80 (11) ◽  
pp. 2537-2542 ◽  
Author(s):  
Zexun Tang ◽  
Deshu Gao ◽  
Ping Chen ◽  
Zhaohui Li ◽  
Qiang Wu

Ni1/3Co1/3Mn1/3(OH)2, a precursor of LiNi1/3Co1/3Mn1/3O2 in new-generation Li-ion batteries, was prepared by a hydroxide coprecipitation method. Scanning electronic microscopy (SEM) micrographs reveal that the precursor particles thus obtained, show regular shape with uniform size under optimized conditions. X-ray diffraction (XRD) indicates that well-ordered layer-structured LiNi1/3Co1/3Mn1/3O2 was prepared after calcination at high temperature. The final product exhibited a spherical morphology with uniform size distribution (10 μm in diameter). At the terminal charging voltage of 4.3 and 4.5 V (vs. Li/Li+), the testing cells of LiNi1/3Co1/3Mn1/3O2 delivered a specific capacity of 161.2 and 184.1 mAh g-1, respectively. The high capacity retention of 98.0 and 96.1 % after charging to 4.3 and 4.5 V for 50 cycles, respectively, indicates that this material displays excellent cycling stability even at high cut-off voltage.


2011 ◽  
Vol 04 (03) ◽  
pp. 299-303 ◽  
Author(s):  
ZHUO TAN ◽  
PING GAO ◽  
FUQUAN CHENG ◽  
HONGJUN LUO ◽  
JITAO CHEN ◽  
...  

A multicomponent olivine cathode material, LiMn0.4Fe0.6PO4 , was synthesized via a novel coprecipitation method of the mixed transition metal oxalate. X-ray diffraction patterns indicate that carbon-coated LiMn0.4Fe0.6PO4 has been prepared successfully and that LiMn0.4Fe0.6PO4/C is crystallized in an orthorhombic structure without noticeable impurity. Homogeneous distribution of Mn and Fe in LiMn0.4Fe0.6PO4/C can be observed from the scanning electron microscopy (SEM) and the corresponding energy dispersive X-ray spectrometry (EDS) analysis. Hence, the electrochemical activity of each transition metal in the olivine synthesized via coprecipitation method was enhanced remarkably, as indicated by the galvanostatic charge/discharge measurement. The synthesized LiMn0.4Fe0.6PO4/C exhibits a high capacity of 158.6 ± 3 mAhg-1 at 0.1 C, delivering an excellent rate capability of 122.6 ± 3 mAhg-1 at 10 C and 114.9 ± 3 mAhg-1 at 20 C.


2021 ◽  
pp. 103512
Author(s):  
Zaowen Zhao ◽  
Bao Zhang ◽  
Jingtian Zou ◽  
Pengfei Li ◽  
Zihang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document