Alcohol hydroxides regulate the growth of Ni-Co layered double hydroxides on carbon fiber cloth as supercapacitor electrode materials

2021 ◽  
pp. 139645
Author(s):  
Jiachen Wang ◽  
Zhiwei Liu ◽  
Yuhong Zhao
RSC Advances ◽  
2017 ◽  
Vol 7 (77) ◽  
pp. 49010-49014 ◽  
Author(s):  
H. M. Sun ◽  
Y. X. Ye ◽  
Z. F. Tian ◽  
S. L. Wu ◽  
J. Liu ◽  
...  

Ni3+ doped Co0.55Ni0.45-LDHs present a high rate specific capacitance and good cycling stability as supercapacitor electrode materials.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14712-14719 ◽  
Author(s):  
Fuyou Ke ◽  
Jun Tang ◽  
Shanyi Guang ◽  
Hongyao Xu

The effect of surface functionalization of carbon materials on the morphology and performance of carbon/polymer composite materials for supercapacitor electrodes was investigated here.


2021 ◽  
Author(s):  
Luomeng Zhang ◽  
Hui Xia ◽  
Shaobo Liu ◽  
Yishan Zhou ◽  
Yuefeng Zhao ◽  
...  

Abstract Layered double hydroxides as typical supercapacitor electrode materials can perform superior energy storage if the structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to synthesize the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility of NiCo-LDHs, adjust the thickness of materials and optimize the internal pore structures, thereby enhancing the capacitance performance of NiCo-LDHs. When the content of urea is reduced from 0.03 g to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheets structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g-1 under the current density of 1 A g-1, and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g-1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g-1 at 1 A g-1 and the capacitance retention with 78% over 1000 cycles. As a result, it offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Luomeng Zhang ◽  
Hui Xia ◽  
Shaobo Liu ◽  
Yishan Zhou ◽  
Yuefeng Zhao ◽  
...  

AbstractLayered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel–cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to regulate the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility, adjust the thickness and optimize the internal pore structures of NiCo-LDHs, thereby enhancing their capacitance performance. When the content of urea is reduced from 0.03 to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheet structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g−1 under the current density of 1 A g−1 and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g−1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g−1 at 1 A g−1 with the capacitance retention of 78% over 1000 cycles. The current work offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.


Author(s):  
Rui Ma ◽  
Zetong Chen ◽  
Danna Zhao ◽  
Xujing Zhang ◽  
Jingting Zhuo ◽  
...  

To promote the development of supercapacitors and their applications in modern electronics, it is crucial to explore novel supercapacitor electrode materials. As a representative member of the rising 2D MXenes,...


Sign in / Sign up

Export Citation Format

Share Document