scholarly journals Ni3+ doped cobalt–nickel layered double hydroxides as high-performance electrode materials for supercapacitors

RSC Advances ◽  
2017 ◽  
Vol 7 (77) ◽  
pp. 49010-49014 ◽  
Author(s):  
H. M. Sun ◽  
Y. X. Ye ◽  
Z. F. Tian ◽  
S. L. Wu ◽  
J. Liu ◽  
...  

Ni3+ doped Co0.55Ni0.45-LDHs present a high rate specific capacitance and good cycling stability as supercapacitor electrode materials.

2021 ◽  
Author(s):  
Luomeng Zhang ◽  
Hui Xia ◽  
Shaobo Liu ◽  
Yishan Zhou ◽  
Yuefeng Zhao ◽  
...  

Abstract Layered double hydroxides as typical supercapacitor electrode materials can perform superior energy storage if the structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to synthesize the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility of NiCo-LDHs, adjust the thickness of materials and optimize the internal pore structures, thereby enhancing the capacitance performance of NiCo-LDHs. When the content of urea is reduced from 0.03 g to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheets structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g-1 under the current density of 1 A g-1, and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g-1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g-1 at 1 A g-1 and the capacitance retention with 78% over 1000 cycles. As a result, it offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Luomeng Zhang ◽  
Hui Xia ◽  
Shaobo Liu ◽  
Yishan Zhou ◽  
Yuefeng Zhao ◽  
...  

AbstractLayered double hydroxides as typical supercapacitor electrode materials can exhibit superior energy storage performance if their structures are well regulated. In this work, a simple one-step hydrothermal method is used to prepare diverse nickel–cobalt layered double hydroxides (NiCo-LDHs), in which the different contents of urea are used to regulate the different nanostructures of NiCo-LDHs. The results show that the decrease in urea content can effectively improve the dispersibility, adjust the thickness and optimize the internal pore structures of NiCo-LDHs, thereby enhancing their capacitance performance. When the content of urea is reduced from 0.03 to 0.0075 g under a fixed precursor materials mass ratio of nickel (0.06 g) to cobalt (0.02 g) of 3:1, the prepared sample NiCo-LDH-1 exhibits the thickness of 1.62 nm, and the clear thin-layer nanosheet structures and a large number of surface pores are formed, which is beneficial to the transmission of ions into the electrode material. After being prepared as a supercapacitor electrode, the NiCo-LDH-1 displays an ultra-high specific capacitance of 3982.5 F g−1 under the current density of 1 A g−1 and high capacitance retention above 93.6% after 1000 cycles of charging and discharging at a high current density of 10 A g−1. The excellent electrochemical performance of NiCo-LDH-1 is proved by assembling two-electrode asymmetric supercapacitor with carbon spheres, displaying the specific capacitance of 95 F g−1 at 1 A g−1 with the capacitance retention of 78% over 1000 cycles. The current work offers a facile way to control the nanostructure of NiCo-LDHs, confirms the important affection of urea on enhancing capacitive performance for supercapacitor electrode and provides the high possibility for the development of high-performance supercapacitors.


2020 ◽  
Vol 4 (1) ◽  
pp. 337-346 ◽  
Author(s):  
Hailiang Chu ◽  
Ying Zhu ◽  
Tingting Fang ◽  
Junqiang Hua ◽  
Shujun Qiu ◽  
...  

CoNi LDH-6 with a nano-petal structure was prepared, which exhibited excellent rate performance and long-term stability as a supercapacitor electrode.


2021 ◽  
Vol 5 (20) ◽  
pp. 5236-5246
Author(s):  
Xuerui Yi ◽  
Huapeng Sun ◽  
Neil Robertson ◽  
Caroline Kirk

Nanoflower Ni(OH)2 shows exceptionally high specific capacitance.


2017 ◽  
Vol 5 (20) ◽  
pp. 9907-9916 ◽  
Author(s):  
Cuili Xiang ◽  
Qingyong Wang ◽  
Yongjin Zou ◽  
Pengru Huang ◽  
Hailiang Chu ◽  
...  

Graphene-doped flower-like cobalt–nickel–tungsten–boron oxides with self-oxidation were used as high-performance supercapacitor electrode materials.


2021 ◽  
Author(s):  
Chengchao Wang ◽  
Datong Wu ◽  
Yong Qin ◽  
Yong Kong

After in situ selenylation, the hydrothermally synthesized NiMoO4 was partially converted to NiSe2 and MoSe2, and the obtained NiMoO4/NiSe2/MoSe2 nanowire was used as supercapacitor electrode materials. The specific capacitance of...


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 892 ◽  
Author(s):  
Zhouliang Tan ◽  
Feng Yu ◽  
Liu Liu ◽  
Xin Jia ◽  
Yin Lv ◽  
...  

In this paper, we report a complete solution for enhanced sludge treatment involving the removal of toxic metal (Cu(II)) from waste waters, subsequent pyrolytic conversion of these sludge to Cu-doped porous carbon, and their application in energy storage systems. The morphology, composition, and pore structure of the resultant Cu-doped porous carbon could be readily modulated by varying the flocculation capacity of Cu(II). The results demonstrated that it exhibited outstanding performance for supercapacitor electrode applications. The Cu(II) removal efficiency has been evaluated and compared to the possible energy benefits. The flocculant dosage up to 200 mg·L−1 was an equilibrium point existing between environmental impact and energy, at which more than 99% Cu(II) removal efficiency was achieved, while the resulting annealed product showed a high specific capacity (389.9·F·g−1 at 1·A·g−1) and good cycling stability (4% loss after 2500 cycles) as an electrode material for supercapacitors.


2015 ◽  
Vol 8 (5) ◽  
pp. 1559-1568 ◽  
Author(s):  
Xinhui Xia ◽  
Yongqi Zhang ◽  
Dongliang Chao ◽  
Qinqin Xiong ◽  
Zhanxi Fan ◽  
...  

Hierarchical TiC hollow branched fibres are synthesized and demonstrate high-rate supercapacitor energy storage with remarkable wide-temperature specific capacitance and excellent cycling stability.


Sign in / Sign up

Export Citation Format

Share Document