Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance

2019 ◽  
Vol 203 ◽  
pp. 109417 ◽  
Author(s):  
Mihaela Teni ◽  
Hrvoje Krstić ◽  
Piotr Kosiński
2019 ◽  
Vol 11 (20) ◽  
pp. 5592 ◽  
Author(s):  
Stefano Cascone ◽  
Gianpiero Evola ◽  
Antonio Gagliano ◽  
Gaetano Sciuto ◽  
Chiara Baroetto Parisi

This paper investigates the performance of timber-framed walls insulated with straw bales, and compares them with similar walls containing expanded polystyrene (EPS) instead of straw bales. First, thermal conductivity, initial water content, and density of the straw bales were experimentally measured in a laboratory set-up, and the dependence of the thermal conductivity of the dry material on temperature was described. Then, the two insulation solutions were compared by looking at their steady and periodic thermal transmittance, decrement factor, phase shift, internal areal heat capacity and surface mass. Finally, the acoustic performance of both wall typologies was analyzed by means of in situ measurements in two-story buildings built in Southern Italy. The weighted apparent sound reduction index for the partition wall between two houses and the weighted standardized level difference for the façades were assessed based on ISO Standard 16283. The results indicate that the dry straw bales have an average thermal conductivity of k = 0.0573 W/(m·K), and their density is around 80 kg/m3. In addition, straw bale walls have good steady thermal performance, but they still lack sufficient thermal inertia, as witnessed by the low phase shift and the high periodic thermal transmittance. Finally, according to the on-site measurements, the results underline that the acoustic performance of the straw bale walls is far better than the walls adopting traditional EPS insulation. Overall, the straw bales investigated are a promising natural and sustainable solution for thermal and sound insulation of buildings.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 584
Author(s):  
Hrvoje Krstić ◽  
Ivana Miličević ◽  
Damir Markulak ◽  
Mihaela Domazetović

Hollow concrete masonry blocks made of low strength self-compacting concrete with recycled crushed brick and ground polystyrene as an aggregate (RBC-EP blocks), and their expected structural role as masonry infill in steel frames, has been confirmed in previous research studies, thus the extensive investigation of thermal properties is presented in this paper to fully approve their potential application in practice. The Heat Flow and Temperature Based Method was used to conduct in-situ measurements of the wall thermal transmittance (U-value). The experimental U-values of the wall without insulation varied from 1.363 to 1.782 W/m2·K, and the theoretical value was calculated to be 2.01 W/m2·K. Thermal conductivity of the material used for making RBC-EP blocks was measured in a laboratory by using a heat flow meter instrument. To better understand the thermal performance characteristics of a wall constructed from RBC-EP blocks, a comparison with standard materials currently used and found on the market was performed. Walls constructed from RBC-EP blocks show an improvement of building technology and environmentally based enhancement of concrete blocks, since they use recycled materials. They can replace standard lightweight concrete blocks due to their desired mechanical properties, as well as the better thermal performance properties compared to commonly used materials for building walls.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2018 ◽  
Vol 83 (754) ◽  
pp. 955-964
Author(s):  
Kazunori TAKADA ◽  
Koichi TATEMATSU ◽  
Kei SHIMONOSONO ◽  
Hirofumi HAYAMA ◽  
Taro MORI ◽  
...  

2013 ◽  
Vol 24 (3) ◽  
pp. 147
Author(s):  
Ming LI ◽  
Qinghua YANG ◽  
Jiechen ZHAO ◽  
Lin ZHANG ◽  
Chunhua LI ◽  
...  

1995 ◽  
Vol 31 (7) ◽  
pp. 51-59 ◽  
Author(s):  
Ian Guymer ◽  
Rob O'Brien

Previously, the design of sewer systems has been limited to studies of their hydraulic characteristics, in particular the ability of the system to convey the maximum discharge. Greater environmental awareness has necessitated that new designs, and some existing schemes, are assessed to determine the environmental load which the scheme will deliver to any downstream component. This paper describes a laboratory programme which has been designed to elucidate the effects of manholes on the longitudinal dispersion of solutes. A laboratory system is described, which allows in situ measurements to be taken of the concentration of a fluorescent solute tracer, both up- and down-stream of a surcharged manhole junction. Results are presented from a preliminary series of studies undertaken for a single manhole geometry over a range of discharges, with varying levels of surcharge. Results are presented showing the variation of travel time, change in second moment of the distribution and of a dispersion factor with surcharge, assuming a Taylor approach and determining the dispersion factor using a ‘change in moment’ method. The effect of the stored volume within the manhole is clearly evident. The limitations and the applicability of this approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document