Study on heat transfer characteristics of indirect evaporative cooling system based on secondary side hydrophilic

2021 ◽  
pp. 111704
Author(s):  
Yuwen You ◽  
Guo Wang ◽  
Bin Yang ◽  
Chunmei Guo ◽  
Yiwei Ma ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 332
Author(s):  
Yuanyuan Zhou ◽  
Zhen Yan ◽  
Ming Gao ◽  
Qiumin Dai ◽  
Yanshun Yu

An indirect evaporative cooling system combining with thermoelectric cooling technology (i.e., TIEC system) is proposed, in which a counter-flow plate-fin indirect evaporative cooler is inserted with thermoelectric cooling (i.e., TEC) modules. In hot and humid climate, condensation may occur on the dry channel surface of the cooler. For the TIEC system, with the aid of TEC technology, the surface temperature of the dry channel can be much lower than that of a traditional indirect evaporative cooler, thus, the condensation from the primary air is more likely to take place. A numerical model of this novel TIEC system is developed with specifically taking condensation from primary air into account. Detailed performance analysis of the TIEC system is carried out. Analytical results found that the condensation from primary air reduces the dew point effectiveness by up to 45.0% by weakening the sensible heat transfer but increases the coefficient of performance by up to 62.2% by increasing the latent heat transfer, under given conditions. The effects of main operating conditions, such as the electrical current I and number n of TEC modules, inlet temperature Tp,i, humidity ratio RHp and velocity Vp of the primary air, and the mass flow rate ratio x of secondary to primary air, are investigated under non-condensation and condensation states. It is shown that condensate is more easily produced under higher I, n, Tp,i, RHp, x and lower Vp.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Author(s):  
I Nyoman Suprapta Winaya ◽  
Hendra Wijaksana ◽  
Made Sucipta ◽  
Ainul Ghurri

The high energy consumption of compressor based cooling system has prompted the researchers to study and develop non-compressor based cooling system that less energy consumption, less environment damaging but still has high enough cooling performances. Indirect and semi indirect evaporative cooling system is the feasible non-compressor based cooling systems that can reach the cooling performance required. This two evaporative cooling system has some different in construction, porous material used, airflow scheme and secondary air cooling method used for various applications. This paper would report the cooling performances achieved by those two cooling system in terms of cooling efficiency, cooling capacity, wet bulb effectiveness, dew point effectiveness, and temperature drop. Porous material used in indirect and semi-indirect evaporative cooling would be highlighted in terms of their type, size, thickness and any other feature. The introduction of nanopore skinless bamboo potency as a new porous material for either indirect or semi-indirect evaporative cooling would be described. In the future study of nanopore skinless bamboo, a surface morphology and several hygrothermal test including sorption, water vapor transmission, thermal conductivity test would be applied, before it utilize as a new porous material for direct or semi indirect evaporative cooling.


Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 119045
Author(s):  
Elvire Katramiz ◽  
Hussein Al Jebaei ◽  
Sorour Alotaibi ◽  
Walid Chakroun ◽  
Nesreen Ghaddar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document