Exergoenvironmental optimization of Heat Recovery Steam Generators in combined cycle power plant through energy and exergy analysis

2013 ◽  
Vol 67 ◽  
pp. 27-33 ◽  
Author(s):  
Abdolsaeid Ganjeh Kaviri ◽  
Mohammad Nazri Mohd. Jaafar ◽  
Tholudin Mat Lazim ◽  
Hassan Barzegaravval
2018 ◽  
Vol 41 (13) ◽  
pp. 1495-1504 ◽  
Author(s):  
Mir Sikander Ali ◽  
Qadir Nawaz Shafique ◽  
Dileep Kumar ◽  
Summeet Kumar ◽  
Sanjay Kumar

Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo-Leyte ◽  
Martín Salazar-Pereyra ◽  
Miguel Toledo Velázquez ◽  
Helen Denise Lugo-Méndez ◽  
...  

This paper presents an exergoeconomic analysis of the combined cycle power plant Tuxpan II located in Mexico. The plant is composed of two identical modules conformed by two gas turbines generating the required work and releasing the hot exhaust gases in two heat recovery steam generators. These components generate steam at three different pressure levels, used to produce additional work in one steam turbine. The productive structure of the considered system is used to visualize the cost formation process as well as the productive interaction between their components. The exergoeconomic analysis is pursued by 1) carrying out a systematic approach, based on the Fuel-Product methodology, in each component of the system; and 2) generating a set of equations, which allows compute the exergetic and exergoeconomic costs of each flow. The thermal and exergetic efficiency of the two gas turbines delivering 278.4 MW are 35.16% and 41.90% respectively. The computed thermal efficiency of the steam cycle providing 80.96 MW is 43.79%. The combined cycle power plant generates 359.36 MW with a thermal and exergetic efficiency of 47.27% and 54.10% respectively.


Author(s):  
Akber Pasha ◽  
Andrew S. Ragland ◽  
Suichu Sun

The design, operation and usage of Heat Recovery Steam Generators (HRSG) has undergone considerable changes in the last 30 years. Nowadays, instead of as an option item, HRSGs are a major part of the Combined Cycle Power Plant. This makes it necessary to optimize the design and operation of the HRSG so that it can be integrated with the total plant. However, because of the complexity, it is not always feasible to evaluate all possible configurations for selecting the most optimum one within the given time constraints. An attempt is made here to present the parametric effect of various variables through descriptive graphs. These graphs are developed for general cases but can be applied to specific cases to give the trend rather than the absolute values. Cycle designers can use those to narrow down the cycle HRSG configurations. Plant operators may be able to use these to improve the performance by simple additions or modifications.


Author(s):  
Ravin G. Naik ◽  
Chirayu M. Shah ◽  
Arvind S. Mohite

To produce the power with higher overall efficiency and reasonable cost is ultimate aim for the power industries in the power deficient scenario. Though combined cycle power plant is most efficient way to produce the power in today’s world, rapidly increasing fuel prices motivates to define a strategy for cost-effective optimization of this system. The heat recovery steam generator is one of the equipment which is custom made for combined cycle power plant. So, here the particular interest is to optimize the combined power cycle performance through optimum design of heat recovery steam generator. The case of combined cycle power plant re-powered from the existing Rankine cycle based power plant is considered to be simulated and optimized. Various possible configuration and arrangements for heat recovery steam generator has been examined to produce the steam for steam turbine. Arrangement of heat exchangers of heat recovery steam generator is optimized for bottoming cycle’s power through what-if analysis. Steady state model has been developed using heat and mass balance equations for various subsystems to simulate the performance of combined power cycles. To evaluate the performance of combined power cycles and its subsystems in the view of second law of thermodynamics, exergy analysis has been performed and exergetic efficiency has been determined. Exergy concepts provide the deep insight into the losses through subsystems and actual performance. If the sole objective of optimization of heat recovery steam generator is to increase the exergetic efficiency or minimizing the exergy losses then it leads to the very high cost of power which is not acceptable. The exergo-economic analysis has been carried to find the cost flow from each subsystem involved to the combined power cycles. Thus the second law of thermodynamics combined with economics represents a very powerful tool for the systematic study and optimization of combined power cycles. Optimization studies have been carried out to evaluate the values of decision parameters of heat recovery steam generator for optimum exergetic efficiency and product cost. Genetic algorithm has been utilized for multi-objective optimization of this complex and nonlinear system. Pareto fronts generated by this study represent the set of best solutions and thus providing a support to the decision-making.


Author(s):  
Guillermo Valencia ◽  
Armando Fontalvo ◽  
Yulineth Cardenas ◽  
Jorge Duarte ◽  
Cesar Isaza

One way to increase overall natural gas engine efficiency is to transform exhaust waste heat into useful energy by means of a bottoming cycle. Organic Rankine cycle (ORC) is a promising technology to convert medium and low grade waste heat into mechanical power and electricity. This paper presents an energy and exergy analysis of three ORC-Waste heat recovery configurations by using an intermediate thermal oil circuit: Simple ORC (SORC), ORC with Recuperator (RORC) and ORC with Double Pressure (DORC), and Cyclohexane, Toluene and Acetone have been proposed as working fluids. An energy and exergy thermodynamic model is proposed to evaluate each configuration performance, while available exhaust thermal energy variation under different engine loads was determined through an experimentally validated mathematical model. Additionally, the effect of evaportating pressure on net power output , absolute thermal efficiency increase, absolute specific fuel consumption decrease, overall energy conversion efficiency, and component exergy destruction is also investigated. Results evidence an improvement in operational performance for heat recovery through RORC with Toluene at an evaporation pressure of 3.4 MPa, achieving 146.25 kW of net power output, 11.58% of overall conversion efficiency, 28.4% of ORC thermal efficiency, and an specific fuel consumption reduction of 7.67% at a 1482 rpm engine speed, a 120.2 L/min natural gas Flow, 1.784 lambda, and 1758.77 kW mechanical engine power.


Sign in / Sign up

Export Citation Format

Share Document