Plantwide control and operating strategy for air separation unit in oxy-combustion power plants

2015 ◽  
Vol 106 ◽  
pp. 782-792 ◽  
Author(s):  
Bo Jin ◽  
Mingze Su ◽  
Haibo Zhao ◽  
Chuguang Zheng
Author(s):  
Paolo Chiesa ◽  
Giovanni Lozza

This paper analyzes the fundamentals of IGCC power plants where carbon dioxide produced by syngas combustion can be removed, liquefied and eventually disposed, to limit the environmental problems due to the “greenhouse effect”. To achieve this goal, a semiclosed-loop gas turbine cycle using an highly-enriched CO2 mixture as working fluid was adopted. As the oxidizer, syngas combustion utilizes oxygen produced by an air separation unit. Combustion gases mainly consist of CO2 and H2O: after expansion, heat recovery and water condensation, a part of the exhausts, highly concentrated in CO2, can be easily extracted, compressed and liquefied for storage or disposal. A detailed discussion about the configuration and the thermodynamic performance of these plants is the aim of the paper. Proper attention was paid to: (i) the modelization of the gasification section and of its integration with the power cycle, (ii) the optimization of the pressure ratio due the change of the cycle working fluid, (iii) the calculation of the power consumption of the “auxiliary” equipment, including the compression train of the separated CO2 and the air separation unit. The resulting overall efficiency is in the 38–39% range, with status-of-the-art gas turbine technology, but resorting to a substantially higher pressure ratio. The extent of modifications to the gas turbine engine, with respect to commercial units, was therefore discussed. Relevant modifications are needed, but not involving changes in the technology. A second plant scheme will be considered in the second part of the paper, using air for syngas combustion and a physical absorption process to separate CO2 from nitrogen-rich exhausts. A comparison between the two options will be addressed there.


1999 ◽  
Vol 121 (4) ◽  
pp. 635-641 ◽  
Author(s):  
P. Chiesa ◽  
G. Lozza

This paper analyzes the fundamentals of IGCC power plants where carbon dioxide produced by syngas combustion can be removed, liquefied and eventually disposed, to limit the environmental problems due to the “greenhouse effect.” To achieve this goal, a semiclosed-loop gas turbine cycle using an highly-enriched CO2 mixture as working fluid was adopted. As the oxidizer, syngas combustion utilizes oxygen produced by an air separation unit. Combustion gases mainly consists of CO2 and H2O: after expansion, heat recovery and water condensation, a part of the exhausts, highly concentrated in CO2, can be easily extracted, compressed and liquefied for storage or disposal. A detailed discussion about the configuration and the thermodynamic performance of these plants is the aim of the paper. Proper attention was paid to: (i) the modelization of the gasification section and of its integration with the power cycle, (ii) the optimization of the pressure ratio due the change of the cycle working fluid, (iii) the calculation of the power consumption of the “auxiliary” equipment, including the compression train of the separated CO2 and the air separation unit. The resulting overall efficiency is in the 38–39 percent range, with status-of-the-art gas turbine technology, but resorting to a substantially higher pressure ratio. The extent of modifications to the gas turbine engine, with respect to commercial units, was therefore discussed. Relevant modifications are needed, but not involving changes in the technology. A second plant scheme will be considered in the second part of the paper, using air for syngas combustion and a physical absorption process to separate CO2 from nitrogen-rich exhausts. A comparison between the two options will be addressed there.


Author(s):  
Jongsup Hong ◽  
Ahmed F. Ghoniem ◽  
Randall Field ◽  
Marco Gazzino

Oxy-fuel combustion coal-fired power plants can achieve significant reduction in carbon dioxide emissions, but at the cost of lowering their efficiency. Research and development are conducted to reduce the efficiency penalty and to improve their reliability. High-pressure oxy-fuel combustion has been shown to improve the overall performance by recuperating more of the fuel enthalpy into the power cycle. In our previous papers, we demonstrated how pressurized oxy-fuel combustion indeed achieves higher net efficiency than that of conventional atmospheric oxy-fuel power cycles. The system utilizes a cryogenic air separation unit, a carbon dioxide purification/compression unit, and flue gas recirculation system, adding to its cost. In this study, we perform a techno-economic feasibility study of pressurized oxy-fuel combustion power systems. A number of reports and papers have been used to develop reliable models which can predict the costs of power plant components, its operation, and carbon dioxide capture specific systems, etc. We evaluate different metrics including capital investments, cost of electricity, and CO2 avoidance costs. Based on our cost analysis, we show that the pressurized oxy-fuel power system is an effective solution in comparison to other carbon dioxide capture technologies. The higher heat recovery displaces some of the regeneration components of the feedwater system. Moreover, pressurized operating conditions lead to reduction in the size of several other critical components. Sensitivity analysis with respect to important parameters such as coal price and plant capacity is performed. The analysis suggests a guideline to operate pressurized oxy-fuel combustion power plants in a more cost-effective way.


Sign in / Sign up

Export Citation Format

Share Document