Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit

Energy ◽  
2015 ◽  
Vol 85 ◽  
pp. 45-61 ◽  
Author(s):  
Katarzyna Janusz-Szymańska ◽  
Aleksandra Dryjańska
2013 ◽  
Vol 34 (4) ◽  
pp. 199-214
Author(s):  
Mateusz Brzęczek ◽  
Łukasz Bartela

Abstract This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.


2014 ◽  
Vol 35 (3) ◽  
pp. 105-116 ◽  
Author(s):  
Janusz Kotowicz ◽  
Adrian Balicki ◽  
Sebastian Michalski

Abstract Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.


2016 ◽  
Vol 37 (3) ◽  
pp. 359-371
Author(s):  
Janusz Kotowicz ◽  
Sebastian Michalski ◽  
Adrian Balicki

Abstract In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C). The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95%) were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.


Sign in / Sign up

Export Citation Format

Share Document