A study of the operation of a low-pressure air separation unit condenser-vaporizer

1971 ◽  
Vol 7 (2) ◽  
pp. 123-125
Author(s):  
I. P. Usyukin ◽  
V. V. Dobrov
Author(s):  
Miroslav Variny ◽  
Dominika Jediná ◽  
Miroslav Rimár ◽  
Ján Kizek ◽  
Marianna Kšiňanová

Oxygen production in cryogenic air separation units is related to a significant carbon footprint and its supply in the medicinal sphere became critical during the recent COVID-19 crisis. An improved unit design was proposed, utilizing a part of waste heat produced during air pre-cooling and intercooling via absorption coolers, to reduce power consumption. Variable ambient air humidity impact on compressed air dryers’ regeneration was also considered. A steady-state process simulation of a model 500 t h−1 inlet cryogenic air separation unit was performed in Aspen Plus® V11. Comparison of a model without and with absorption coolers yielded an achievable reduction in power consumption for air compression and air dryer regeneration by 6 to 9% (23 to 33 GWh year−1) and a favorable simple payback period of 4 to 10 years, both depending on air pressure loss in additional heat exchangers to be installed. The resulting specific oxygen production decrease amounted to EUR 2–4.2 t−1. Emissions of major gaseous pollutants from power production were both calculated by an in-house developed thermal power plant model and adopted from literature. A power consumption cut was translated into the following annual greenhouse gas emission reduction: CO2 16 to 30 kilotons, CO 0.3 to 2.3 tons, SOx 4.7 to 187 tons and NOx 11 to 56 tons, depending on applied fossil fuel-based emission factors. Considering a more renewable energy sources-containing energy mix, annual greenhouse gas emissions decreased by 50 to over 80%, varying for individual pollutants.


2013 ◽  
Vol 34 (4) ◽  
pp. 199-214
Author(s):  
Mateusz Brzęczek ◽  
Łukasz Bartela

Abstract This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.


2018 ◽  
Vol 143 ◽  
pp. 123-129 ◽  
Author(s):  
L.G. Tong ◽  
P. Zhang ◽  
S.W. Yin ◽  
P.K. Zhang ◽  
C.P. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document