Energy analysis and multi-objective optimization of waste heat and cold energy recovery process in LNG-fueled vessels based on a triple organic Rankine cycle

2019 ◽  
Vol 195 ◽  
pp. 561-572 ◽  
Author(s):  
Fenghui Han ◽  
Zhe Wang ◽  
Yulong Ji ◽  
Wenhua Li ◽  
Bengt Sundén
Energy ◽  
2015 ◽  
Vol 93 ◽  
pp. 2208-2228 ◽  
Author(s):  
Fubin Yang ◽  
Hongguang Zhang ◽  
Songsong Song ◽  
Chen Bei ◽  
Hongjin Wang ◽  
...  

2019 ◽  
Vol 116 ◽  
pp. 00062 ◽  
Author(s):  
Parth Prajapati ◽  
Vivek Patel

The present work deals with multi objective optimization of nanofluid based Organic Rankine Cycle (ORC) to utilise waste heat energy. Working fluid considered for the study is R245ca for its good thermodynamic properties and lower Global Warming Potential (GWP) compared to the conventional fluids used in the waste heat recovery system. Heat Transfer Search (HTS) algorithm is used to optimize the objective functions which tends to maximize thermal efficiency and minimize Levelised Energy Cost (LEC). To enhance heat transfer between the working fluid and source fluid, nanoparticles are added to the source fluid. Application of nanofluids in the heat transfer system helps in maximizing recovery of the waste heat in the heat exchangers. Based on the availability and cost, CuO nanoparticles are considered for the study. Effect of Pinch Point Temperature Difference (PPTD) and concentration of nanoparticles in heat exchangers is studied and discussed. Results showed that nanofluids based ORC gives maximum thermal efficiency of 18.50% at LEC of 2.59 $/kWh. Total reduction of 7.11% in LEC can be achieved using nanofluids.


2019 ◽  
Vol 118 ◽  
pp. 03053
Author(s):  
Ruijie Wang ◽  
Jingquan Zhao ◽  
Lei Zhu ◽  
Guohua Kuang

The organic Rankine cycle (ORC) is considered as one of the most viable technology to recover low-grade waste heat. A multi-objective optimization model is established to simultaneously derive the maximum exergy efficiency and the minimum electricity production cost (EPC) of a specific ORC system by employing the genetic algorithm (GA). Evaporation temperature and condensation temperature are selected as decision variables. At first, variations of exergy efficiency and EPC with evaporation temperature and condensation temperature are investigated respectively using R245fa, R245ca, R600, R600a, R601 and R601a as working fluids. Subsequently, a multi-objective optimization is performed and the Pareto frontiers for various working fluids are obtained. Results indicate that performance of the specific ORC system with R245fa as working fluid is better that with other working fluids.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6492
Author(s):  
Shuozhuo Hu ◽  
Zhen Yang ◽  
Jian Li ◽  
Yuanyuan Duan

Organic Rankine cycle (ORC) is considered a promising heat-to-power technology to utilize waste heat and renewable energy, including solar, biomass and geothermal. However, since the thermodynamic, economic and environmental performance is usually conflict, the single objective design could no longer meet the requirements of the ORC system, putting forward urgent requirements for multi-objective optimization, which has attracted increasing attention with lots of papers published. However, due to these different decision variables, optimization objectives and approaches, existing research is significantly different from each other and is difficult to compare without a systematic summary. Therefore, this paper provides an overview of ORC multi-objective research from three perspectives: optimization objective, method and optimization parameters. Based on the classification of different objectives, this work summarizes the involved variables and provides a recommendation for selecting appropriate objectives in different scenarios. For the optimization method, this work compares different approaches and reveals their advantages and disadvantages. Finally, the decision variables are reviewed and classified into four levels. Then the integrated design approach considering “system-process-component-fluid” is proposed and recommended for further development.


Sign in / Sign up

Export Citation Format

Share Document