Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle

2020 ◽  
Vol 207 ◽  
pp. 112514 ◽  
Author(s):  
Christopher Depcik ◽  
Truman Cassady ◽  
Bradley Collicott ◽  
Sindhu Preetham Burugupally ◽  
Xianglin Li ◽  
...  
2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Wanyi Ng ◽  
Mrinalgouda Patil ◽  
Anubhav Datta

The objective of this paper is to study the impact of combining hydrogen fuel cells with lithium-ion batteries through an ideal power-sharing architecture to mitigate the poor range and endurance of battery powered electric vertical takeoff and landing (eVTOL) aircraft. The benefits of combining the two sources is first illustrated by a conceptual sizing of an electric tiltrotor for an urban air taxi mission of 75 mi cruise and 5 min hover. It is shown that an aircraft of 5000–6000 lb gross weight can carry a practical payload of 500 lb (two to three seats) with present levels of battery specific energy (150 Wh/kg) if only a battery–fuel cell hybrid power plant is used, combined in an ideal power-sharing manner, as long as high burst C-rate batteries are available (4–10 C). A power plant using batteries alone can carry less than half the payload; use of fuel cells alone cannot lift off the ground. Next, the operation of such a system is demonstrated using systematic hardware testing. The concepts of unregulated and regulated power-sharing architectures are described. A regulated architecture that can implement ideal power sharing is built up in a step-by-step manner. It is found only two switches and three DC-to-DC converters are necessary, and if placed appropriately, are sufficient to achieve the desired power flow. Finally, a simple power system model is developed, validated with test data and used to gain fundamental understanding of power sharing.


2021 ◽  
pp. 112-115

Hydrogen fuel constitutes an attainable alternative strategy, which can be implemented in the long term. This strategy can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility. Hydrogen internal combustion engines represent a doable and less expensive solution for using hydrogen than purchasing a new car equipped with a hydrogen fuel cell. Conventional piston engines can be switched to gas operation with relatively little change. This approach is environmentally more viable, as in a short time most vehicles can be switched to emission-free operation. Also, it can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility.


2014 ◽  
Vol 528 ◽  
pp. 258-263
Author(s):  
Hong Jun Ni ◽  
Shuai Shua Lv ◽  
Yi Pei ◽  
Lin Fei Chen

Fuel Cell Vehicle (FCV) is the ideal solution for Sustainable Mobility in the future. A new type of hydrogen fuel battery –Lithium-ion battery hybrid power system was introduced; The current hydrogen fuel cell vehicles power system and automotive hydrogen storage system at home and abroad are summarized. Energy efficiency factors as well as means to improve energy efficiency of fuel cell hybrid system were discussed.


2021 ◽  
Vol 46 ◽  
pp. 101234
Author(s):  
M. Haji Akhoundzadeh ◽  
S. Panchal ◽  
E. Samadani ◽  
K. Raahemifar ◽  
M. Fowler ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
pp. 56
Author(s):  
Mohamed Elaguab ◽  
Tayeb Allaoui ◽  
Abdelkader Chaker ◽  
Abdellah Kouzou ◽  
Lalia Merabet

2021 ◽  
Vol 489 ◽  
pp. 229450
Author(s):  
Sahar Foorginezhad ◽  
Masoud Mohseni-Dargah ◽  
Zahra Falahati ◽  
Rouzbeh Abbassi ◽  
Amir Razmjou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document