scholarly journals Hydrogen Internal Combustion Engine

2021 ◽  
pp. 112-115

Hydrogen fuel constitutes an attainable alternative strategy, which can be implemented in the long term. This strategy can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility. Hydrogen internal combustion engines represent a doable and less expensive solution for using hydrogen than purchasing a new car equipped with a hydrogen fuel cell. Conventional piston engines can be switched to gas operation with relatively little change. This approach is environmentally more viable, as in a short time most vehicles can be switched to emission-free operation. Also, it can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility.

Author(s):  
S. A. Vorobyov ◽  
◽  
P. A. Razumov ◽  

The use of hydrogen as fuel in wheeled vehicles with an internal combustion engine is considered, and an algorithm for its effective use is developed. This algorithm will minimize the time and cost of re-equipping the power system to obtain an environmental and economic effect on vehicles equipped with gasoline or gas internal combustion engines operating on the Otto cycle with various power systems.


Author(s):  
Chuanhao Zhao ◽  
Yang Luo

This paper is a brief review of the homogeneous charge compression ignition (HCCI) model for hydrogen-fueled internal combustion engines based on an analysis of the advantages and disadvantages of hydrogen internal combustion engines and HCCI combustion. It found that HCCI can be realized in a hydrogen-fueled internal combustion engine, meanwhile the HCCI can effectively reduce the emission of hydrogen internal combustion engine.


Author(s):  
Shravan K. Vudumu ◽  
Umit O. Koylu

Hydrogen is an alternative fuel that is considered to be one of the viable solutions to the increasing demands of clean and secure energy. Internal combustion engines fueled by hydrogen have the potential for higher power and efficiency with lower emissions when compared to gasoline. In the present study, advanced engine simulations were used to study the performance, combustion and emission characteristics of a hydrogen-fueled engine. Hydrogen fuel-specific combustion models were used to account for the distinctive characteristics of hydrogen combustion when compared to that of gasoline. The simulation results matched well with the already-published experimental data under similar engine operational conditions. NOx emissions were found to increase drastically after an equivalence ratio of 0.5 due to high combustion temperatures. EGR was found to be an effective way to reduce NOx emissions but compromised engine power and efficiency.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (8) ◽  
pp. 581-586 ◽  
Author(s):  
Robert W. Lashway

AbstractThe articles in this issue of MRS Bulletin highlight the enormous potential of fuel cells for generating electricity using multiple fuels and crossing a wide range of applications. Fuel cells convert chemical energy directly into electrical energy, and as a powergeneration module, they can be viewed as a continuously operating battery.They take in air (or pure oxygen, for aerospace or undersea applications) and hydrocarbon or hydrogen fuel to produce direct current at various outputs. The electrical output can be converted and then connected to motors to generate much cleaner and more fuelefficient power than is possible from internal combustion engines, even when combined with electrical generators in today's hybrid engines. The commercialization of these fuel cell technologies is contingent upon additional advances in materials science that will suit the aggressive electrochemical environment of fuel cells (i.e., both reducing an oxidizing) and provide ionic and electrical conductance for thousands of hours of operation.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


Sign in / Sign up

Export Citation Format

Share Document