Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration

2021 ◽  
Vol 244 ◽  
pp. 114495
Author(s):  
Haider Sultan ◽  
Hafiz Ali Muhammad ◽  
Umair H. Bhatti ◽  
Gwan Hong Min ◽  
Il Hyun Baek ◽  
...  
2000 ◽  
Vol 29 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Yoshiyuki Takeuchi ◽  
Shogo Hironaka ◽  
Yutaka Shimada ◽  
Kenji Tokumasa

2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


Author(s):  
Stefano Mazzoni ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli

The storage of the natural gas under liquid phase is widely adopted and one of the intrinsic phenomena occurring in liquefied natural gas is the so-called boil-off gas; this consists of the regasification of the natural gas due to the ambient temperature and loss of adiabacity in the storage tank. As the boil-off occurs, the so-called cold energy is released to the surrounding environment; such a cold energy could potentially be recovered for several end-uses such as cooling power generation, air separation, air conditioning, dry-ice manufacturing and conditioning of inlet air at the compressor of gas turbine engines. This paper deals with the benefit corresponding to the cooling down of the inlet air temperature to the compressor, by means of internal heat transfer recovery from the liquefied natural gas boil-off gas cold energy availability. The lower the compressor inlet temperature, the higher the gas turbine performance (power and efficiency); the exploitation of the liquefied natural gas boil-off gas cold energy also corresponds to a higher amount of air flow rate entering the cycle which plays in favour of the bottoming heat recovery steam generator and the related steam cycle. Benefit of this solution, in terms of yearly work and gain increase have been established by means of ad hoc developed component models representing heat transfer device (air/boil-off gas) and heavy duty 300 MW gas turbine. For a given ambient temperature variability over a year, the results of the analysis have proven that the increase of electricity production and efficiency due to the boil-off gas cold energy recovery has finally yield a revenue increase of 600,000€/year.


1997 ◽  
Vol 63 (606) ◽  
pp. 654-659 ◽  
Author(s):  
Yoshiyuki TAKEUCHI ◽  
Haruyoshi FUJITA ◽  
Yutaka SHIMADA ◽  
Kenji TOKUMASA

Sign in / Sign up

Export Citation Format

Share Document