Towards cleaner/sustainable energy consumption in agriculture farms: Performance assessment of two innovative high-performance solar-based multigeneration systems

2021 ◽  
Vol 244 ◽  
pp. 114507
Author(s):  
Olusola Bamisile ◽  
Hailian Jing ◽  
Michael Adedeji ◽  
Jian Li ◽  
Paul O.K. Anane ◽  
...  
Author(s):  
Lin-Sea Lau ◽  
Abdelhak Senadjki ◽  
Suet-Ling Ching ◽  
Chee-Keong Choong ◽  
Ai-Na Seow ◽  
...  

Author(s):  
Erick Leonar Ribeiro ◽  
Elijah M Davis ◽  
Mahshid Mokhtarnejad ◽  
Sheng Hu ◽  
Dibyendu Mukherjee ◽  
...  

Rapidly expanding global energy demands due to fast-paced human-technology interfaces have propelled fuel cell technology as a sustainable energy-conversion alternative. Nonetheless, the rational development of such technology demands the engineering...


2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


Author(s):  
Xiaohan Tao ◽  
Jianmin Pang ◽  
Jinlong Xu ◽  
Yu Zhu

AbstractThe heterogeneous many-core architecture plays an important role in the fields of high-performance computing and scientific computing. It uses accelerator cores with on-chip memories to improve performance and reduce energy consumption. Scratchpad memory (SPM) is a kind of fast on-chip memory with lower energy consumption compared with a hardware cache. However, data transfer between SPM and off-chip memory can be managed only by a programmer or compiler. In this paper, we propose a compiler-directed multithreaded SPM data transfer model (MSDTM) to optimize the process of data transfer in a heterogeneous many-core architecture. We use compile-time analysis to classify data accesses, check dependences and determine the allocation of data transfer operations. We further present the data transfer performance model to derive the optimal granularity of data transfer and select the most profitable data transfer strategy. We implement the proposed MSDTM on the GCC complier and evaluate it on Sunway TaihuLight with selected test cases from benchmarks and scientific computing applications. The experimental result shows that the proposed MSDTM improves the application execution time by 5.49$$\times$$ × and achieves an energy saving of 5.16$$\times$$ × on average.


2021 ◽  
Vol 5 (4) ◽  
pp. 1222-1222
Author(s):  
Cheol-Hwan Shin ◽  
Yi Wei ◽  
Gisang Park ◽  
Joonhee Kang ◽  
Jong-Sung Yu

Correction for ‘High performance binder-free Fe–Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction’ by Cheol-Hwan Shin et al., Sustainable Energy Fuels, 2020, 4, 6311–6320, DOI: 10.1039/D0SE01253J.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zhou ◽  
ShuDao Zhang ◽  
Ying Zhang ◽  
JiaHao Tan

In order to achieve energy saving and reduce the total cost of ownership, green storage has become the first priority for data center. Detecting and deleting the redundant data are the key factors to the reduction of the energy consumption of CPU, while high performance stable chunking strategy provides the groundwork for detecting redundant data. The existing chunking algorithm greatly reduces the system performance when confronted with big data and it wastes a lot of energy. Factors affecting the chunking performance are analyzed and discussed in the paper and a new fingerprint signature calculation is implemented. Furthermore, a Bit String Content Aware Chunking Strategy (BCCS) is put forward. This strategy reduces the cost of signature computation in chunking process to improve the system performance and cuts down the energy consumption of the cloud storage data center. On the basis of relevant test scenarios and test data of this paper, the advantages of the chunking strategy are verified.


Sign in / Sign up

Export Citation Format

Share Document