Optimization of supercritical carbon dioxide based combined cycles for solid oxide fuel cell-gas turbine system: Energy, exergy, environmental and economic analyses

2021 ◽  
Vol 248 ◽  
pp. 114774
Author(s):  
Mingzhang Pan ◽  
Ke Zhang ◽  
Xiaoya Li
Author(s):  
Aristide F. Massardo ◽  
Loredana Magistri

The aim of this work is to investigate the performance of Internal Reforming Solid Oxide Fuel Cell (IRSOFC) and Gas Turbine (GT) combined cycles. A mathematical model of the IRSOFC steady-state operation was presented in Part A of this work (Massardo and Lubelli, 1998), coupled to the thermodynamic analysis of a number of proposed IRSOFC-GT combined cycles, taking into account the influence of several technological constraints. In the second part of this work, both an exergy and a thermoeconomic analysis of the proposed cycles have been carried out using the TEMP code developed by the Author (Agazzani and Massardo, 1997). A suitable equation for IRSOFC cost evaluation based on cell geometry and performance has been proposed and employed to evaluate the electricity generation cost of the proposed combined systems. The results are presented and the influence of several parameters is discussed: external reformer operating conditions, fuel to air ratio, cell current density, compressor pressure ratio, etc. Diagrams proposed by the Author (Massardo and Scialo’, 2000) for cost vs. efficiency, cost vs. specific work, and cost vs. system pressure are also presented and discussed.


2002 ◽  
Vol 125 (1) ◽  
pp. 67-74 ◽  
Author(s):  
A. F. Massardo

The aim of this work is to investigate the performance of internal reforming solid oxide fuel cell (IRSOFC) and gas turbine (GT) combined cycles. A mathematical model of the IRSOFC steady-state operation was presented in Part I of this work coupled to the thermodynamic analysis of a number of proposed IRSOFC-GT combined cycles, taking into account the influence of several technological constraints. In the second part of this work, both an exergy and a thermoeconomic analysis of the proposed cycles have been carried out using the TEMP code developed by the author. A suitable equation for IRSOFC cost evaluation based on cell geometry and performance has been proposed and employed to evaluate the electricity generation cost of the proposed combined systems. The results are presented and the influence of several parameters is discussed: external reformer operating conditions, fuel-to-air ratio, cell current density, compressor pressure ratio, etc. Diagrams proposed by the author for cost versus efficiency, cost versus specific work, and cost versus system pressure are also presented and discussed.


Author(s):  
A. F. Massardo ◽  
F. Lubelli

The aim of this work is to investigate the performance of Internal Reforming Solid Oxide Fuel Cell (IRSOFC) and Gas Turbine (GT) combined cycles. To study complex systems involving IRSOFC a mathematical model has been developed that simulates the fuel cell steady-state operation. The model, tested with data available in literature, has been used for a complete IRSOFC parametric analysis taking into account the influence of cell operative pressure, cell and stream temperatures, fuel-oxidant flow rates and composition, etc. The analysis of IRSOFC-GT combined cycles has been carried out by using the ThermoEconomic Modular Program TEMP (Agazzani and Massardo, 1997). The code has been modified to allow IRSOFC, external reformer and flue gas condenser performance to be taken into account. Using as test case the IRSOFC-GT combined plant proposed by Harvey and Richter (1994) the capability of the modified TEMP code has been demonstrated. The thermodynamic analysis of a number of IRSOFC-GT combined cycles is presented and discussed, taking into account the influence of several technological constraints. The results are presented for both atmospheric and pressurised IRSOFC.


1999 ◽  
Vol 122 (1) ◽  
pp. 27-35 ◽  
Author(s):  
A. F. Massardo ◽  
F. Lubelli

The aim of this work is to investigate the performance of internal reforming solid oxide fuel cell (IRSOFC) and gas turbine (GT) combined cycles. To study complex systems involving IRSOFC a mathematical model has been developed that simulates the fuel cell steady-state operation. The model, tested with data available in literature, has been used for a complete IRSOFC parametric analysis taking into account the influence of cell operative pressure, cell and stream temperatures, fuel-oxidant flow rates and composition, etc. The analysis of IRSOFC-GT combined cycles has been carried out by using the ThermoEconomic Modular Program TEMP (Agazzani and Massardo, 1997). The code has been modified to allow IRSOFC, external reformer and flue gas condenser performance to be taken into account. Using as test case the IRSOFC-GT combined plant proposed by Harvey and Richter (1994) the capability of the modified TEMP code has been demonstrated. The thermodynamic analysis of a number of IRSOFC-GT combined cycles is presented and discussed, taking into account the influence of several technological constraints. The results are presented for both atmospheric and pressurized IRSOFC. [S0742-4795(00)00501-9]


Sign in / Sign up

Export Citation Format

Share Document