Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery

2022 ◽  
Vol 253 ◽  
pp. 115144
Author(s):  
Neda Asasian-Kolur ◽  
Seyedmehdi Sharifian ◽  
Bahram Haddadi ◽  
Mohammad Pourhosseinian ◽  
Zahra Mousazadeh Shekarbaghani ◽  
...  
Keyword(s):  
2002 ◽  
Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki ◽  
Tsugue Itoh ◽  
Ikuya Haze

Author(s):  
Masahiro Osakabe

The most part of energy losses in power system such as fuel cells is due to the heat released by the exhaust gas to atmosphere. The exhaust gas consists of non-condensable gas and steam with sensible and latent heat. As a lot of latent heat is included in the exhaust gas, its recovery is very important to improve the power system efficiency. Based on the previous basic studies, a thermal hydraulic prediction method for latent heat recovery exchangers was proposed. For the condensation of steam on heat transfer tubes, the modified Sherwood number taking account of the mass absorption effect on the wall was used. Two kinds of compact heat exchanger with staggered banks of bare tubes of 10.5 or 4mm in outer diameter was designed with the prediction method. The more compactness was obtained with the smaller tubes at a designed heat recovery. The thermal hydraulic behavior in the compact heat exchangers was experimentally studied with air-steam mixture gas. In the parametric experiments varying the steam mass concentration, the temperature distributions of cooling water and mixture gas were measured. The experimental results agreed well with the prediction proposed in this study and the more compactness with the smaller tubes was proved.


2013 ◽  
Vol 21 (02) ◽  
pp. 1350009 ◽  
Author(s):  
HWATAIK HAN ◽  
SANG-HOON NAM ◽  
GEON-SOO HAN

This study experimentally investigates the effect of internal condensation on the performance of a heat recovery ventilator. Experiments were performed using a plate-type sensible heat exchanger element that was designed for very humid and dusty environments such as chicken broiler houses. The results of these experiments show that the temperature efficiency considering condensation is always greater than that without considering latent heat. As outdoor temperature decreases or indoor relative humidity increases, temperature efficiency increases owing to an increase in the rate of condensation. The present polypropylene-based sensible heat exchanger element could be a solution for harsh environments because it can discharge condensate water by gravity and is resistant to moisture and other toxic gases.


2002 ◽  
Vol 11 (2) ◽  
pp. 144-147 ◽  
Author(s):  
Li Jia ◽  
Xiaoping Li ◽  
Jindong Sun ◽  
Xiaofeng Peng

2015 ◽  
Vol 57 (33) ◽  
pp. 15276-15284 ◽  
Author(s):  
Hongxin Geng ◽  
Long Lin ◽  
Pingli Li ◽  
Chunyao Zhang ◽  
Heying Chang

Author(s):  
Robert G. Ryan ◽  
Tom Brown

A 1 MW Direct Fuel Cell® (DFC) power plant began operation at California State University, Northridge (CSUN) in January, 2007. This plant is currently the largest fuel cell plant in the world operating on a university campus. The plant consists of four 250 kW DFC300MA™ fuel cell units purchased from FuelCell Energy, Inc., and a waste heat recovery system which produces dual heating hot water loops for campus building ventilation heating, and domestic water and swimming pool heating water for the University Student Union (USU). The waste heat recovery system was designed by CSUN’s Physical Plant Management and engineering student staff personnel to accommodate the operating conditions required by the four individual fuel cell units as well as the thermal energy needs of the campus. A Barometric Thermal Trap (BaTT) was designed to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The BaTT is required to maintain an appropriate exhaust back pressure at the individual fuel cell units under a variety of operating conditions and without reliance on mechanical systems for control. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is used for heating water for the campus’ hot water system. The latent heat represents a significant amount of energy because of the high steam content in the fuel cell exhaust, although it is available at a lower temperature. CSUN’s design is able to make effective use of the latent heat because of the need for swimming pool heating and hot water for showers in an adjacent recreational facility at the USU. Design calculations indicate that a Combined Heat and Power efficiency of 74% is possible. This paper discusses the integration of the fuel cell plant into the campus’ energy systems, and presents preliminary operational data for the performance of the heat recovery system.


Sign in / Sign up

Export Citation Format

Share Document