Fractionally Edge Colouring Graphs with Large Maximum Degree in Linear Time

2009 ◽  
Vol 34 ◽  
pp. 47-51
Author(s):  
W. Sean Kennedy ◽  
Conor Meagher ◽  
Bruce A. Reed
10.37236/1551 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Niessen

Let $G$ be a simple graph with $3\Delta (G) > |V|$. The Overfull Graph Conjecture states that the chromatic index of $G$ is equal to $\Delta (G)$, if $G$ does not contain an induced overfull subgraph $H$ with $\Delta (H) = \Delta (G)$, and otherwise it is equal to $\Delta (G) +1$. We present an algorithm that determines these subgraphs in $O(n^{5/3}m)$ time, in general, and in $O(n^3)$ time, if $G$ is regular. Moreover, it is shown that $G$ can have at most three of these subgraphs. If $2\Delta (G) \geq |V|$, then $G$ contains at most one of these subgraphs, and our former algorithm for this situation is improved to run in linear time.


1986 ◽  
Vol 100 (2) ◽  
pp. 303-317 ◽  
Author(s):  
A. G. Chetwynd ◽  
A. J. W. Hilton

The graphs we consider here are either simple graphs, that is they have no loops or multiple edges, or are multigraphs, that is they may have more than one edge joining a pair of vertices, but again have no loops. In particular we shall consider a special kind of multigraph, called a star-multigraph: this is a multigraph which contains a vertex v*, called the star-centre, which is incident with each non-simple edge. An edge-colouring of a multigraph G is a map ø: E(G)→, where is a set of colours and E(G) is the set of edges of G, such that no two edges receiving the same colour have a vertex in common. The chromatic index, or edge-chromatic numberχ′(G) of G is the least value of || for which an edge-colouring of G exists. Generalizing a well-known theorem of Vizing [14], we showed in [6] that, for a star-multigraph G,where Δ(G) denotes the maximum degree (that is, the maximum number of edges incident with a vertex) of G. Star-multigraphs for which χ′(G) = Δ(G) are said to be Class 1, and otherwise they are Class 2.


2017 ◽  
Vol 313 ◽  
pp. 119-121 ◽  
Author(s):  
Jiansheng Cai ◽  
Guiying Yan ◽  
Xia Zhang
Keyword(s):  

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gordana Manić ◽  
Yoshiko Wakabayashi

International audience We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee known so far for these problems has ratio $3/2 + ɛ$, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver in 1989. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs.


2013 ◽  
Vol 23 (1) ◽  
pp. 90-101 ◽  
Author(s):  
TOMÁŠ KAISER ◽  
ROSS J. KANG

We consider two graph colouring problems in which edges at distance at most t are given distinct colours, for some fixed positive integer t. We obtain two upper bounds for the distance-t chromatic index, the least number of colours necessary for such a colouring. One is a bound of (2-ε)Δt for graphs of maximum degree at most Δ, where ε is some absolute positive constant independent of t. The other is a bound of O(Δt/log Δ) (as Δ → ∞) for graphs of maximum degree at most Δ and girth at least 2t+1. The first bound is an analogue of Molloy and Reed's bound on the strong chromatic index. The second bound is tight up to a constant multiplicative factor, as certified by a class of graphs of girth at least g, for every fixed g ≥ 3, of arbitrarily large maximum degree Δ, with distance-t chromatic index at least Ω(Δt/log Δ).


Author(s):  
Naoki Matsumoto

In 2011, Beeler and Hoilman introduced the peg solitaire on graphs. The peg solitaire on a connected graph is a one-player combinatorial game starting with exactly one hole in a vertex and pegs in all other vertices and removing all pegs but exactly one by a sequence of jumps; for a path [Formula: see text], if there are pegs in [Formula: see text] and [Formula: see text] and exists a hole in [Formula: see text], then [Formula: see text] can jump over [Formula: see text] into [Formula: see text], and after that, the peg in [Formula: see text] is removed. A problem of interest in the game is to characterize solvable (respectively, freely solvable) graphs, where a graph is solvable (respectively, freely solvable) if for some (respectively, any) vertex [Formula: see text], starting with a hole [Formula: see text], a terminal state consisting of a single peg can be obtained from the starting state by a sequence of jumps. In this paper, we consider the peg solitaire on graphs with large maximum degree. In particular, we show the necessary and sufficient condition for a graph with large maximum degree to be solvable in terms of the number of pendant vertices adjacent to a vertex of maximum degree. It is a notable point that this paper deals with a question of Beeler and Walvoort whether a non-solvable condition of trees can be extended to other graphs.


2010 ◽  
Vol 100 (4) ◽  
pp. 413-417 ◽  
Author(s):  
Zdeněk Dvořák ◽  
Bojan Mohar

Sign in / Sign up

Export Citation Format

Share Document