scholarly journals How to Find Overfull Subgraphs in Graphs with Large Maximum Degree, II

10.37236/1551 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Niessen

Let $G$ be a simple graph with $3\Delta (G) > |V|$. The Overfull Graph Conjecture states that the chromatic index of $G$ is equal to $\Delta (G)$, if $G$ does not contain an induced overfull subgraph $H$ with $\Delta (H) = \Delta (G)$, and otherwise it is equal to $\Delta (G) +1$. We present an algorithm that determines these subgraphs in $O(n^{5/3}m)$ time, in general, and in $O(n^3)$ time, if $G$ is regular. Moreover, it is shown that $G$ can have at most three of these subgraphs. If $2\Delta (G) \geq |V|$, then $G$ contains at most one of these subgraphs, and our former algorithm for this situation is improved to run in linear time.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.



2009 ◽  
Vol 34 ◽  
pp. 47-51
Author(s):  
W. Sean Kennedy ◽  
Conor Meagher ◽  
Bruce A. Reed


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gordana Manić ◽  
Yoshiko Wakabayashi

International audience We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee known so far for these problems has ratio $3/2 + ɛ$, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver in 1989. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs.



2013 ◽  
Vol 23 (1) ◽  
pp. 90-101 ◽  
Author(s):  
TOMÁŠ KAISER ◽  
ROSS J. KANG

We consider two graph colouring problems in which edges at distance at most t are given distinct colours, for some fixed positive integer t. We obtain two upper bounds for the distance-t chromatic index, the least number of colours necessary for such a colouring. One is a bound of (2-ε)Δt for graphs of maximum degree at most Δ, where ε is some absolute positive constant independent of t. The other is a bound of O(Δt/log Δ) (as Δ → ∞) for graphs of maximum degree at most Δ and girth at least 2t+1. The first bound is an analogue of Molloy and Reed's bound on the strong chromatic index. The second bound is tight up to a constant multiplicative factor, as certified by a class of graphs of girth at least g, for every fixed g ≥ 3, of arbitrarily large maximum degree Δ, with distance-t chromatic index at least Ω(Δt/log Δ).





2017 ◽  
Vol 27 (1) ◽  
pp. 21-43 ◽  
Author(s):  
HENNING BRUHN ◽  
FELIX JOOS

We prove χ′s(G) ≤ 1.93 Δ(G)2 for graphs of sufficiently large maximum degree where χ′s(G) is the strong chromatic index of G. This improves an old bound of Molloy and Reed. As a by-product, we present a Talagrand-type inequality where we are allowed to exclude unlikely bad outcomes that would otherwise render the inequality unusable.



1997 ◽  
Vol 6 (3) ◽  
pp. 295-313 ◽  
Author(s):  
ROLAND HÄGGKVIST ◽  
JEANNETTE JANSSEN

In this paper we show that the list chromatic index of the complete graph Kn is at most n. This proves the list-chromatic conjecture for complete graphs of odd order. We also prove the asymptotic result that for a simple graph with maximum degree d the list chromatic index exceeds d by at most [Oscr ](d2/3√log d).



10.37236/6042 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Henning Bruhn ◽  
Laura Gellert ◽  
Richard Lang

We conjecture that any graph $G$ with treewidth $k$ and maximum degree $\Delta(G)\geq k + \sqrt{k}$ satisfies $\chi'(G)=\Delta(G)$. In support of the conjecture we prove its fractional version. We also show that any graph $G$ with treewidth $k\geq 4$ and maximum degree $2k-1$ satisfies $\chi'(G)=\Delta(G)$, extending an old result of Vizing.



10.37236/7451 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Ralph Keusch

We study the two-player game where Maker and Breaker alternately color the edges of a given graph $G$ with $k$ colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index $\chi'_g(G)$ denotes the smallest $k$ for which Maker has a winning strategy.The trivial bounds $\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1$ hold for every graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Beveridge, Bohman, Frieze, and Pikhurko conjectured that there exists a constant $c>0$ such that for any graph $G$ it holds $\chi'_g(G) \le (2-c)\Delta(G)$ [Theoretical Computer Science 2008], and verified the statement for all $\delta>0$ and all graphs with $\Delta(G) \ge (\frac12+\delta)|V(G)|$. In this paper, we show that $\chi'_g(G) \le (2-c)\Delta(G)$ is true for all graphs $G$ with $\Delta(G) \ge C \log |V(G)|$. In addition, we consider a biased version of the game where Breaker is allowed to color $b$ edges per turn and give bounds on the number of colors needed for Maker to win this biased game.



Sign in / Sign up

Export Citation Format

Share Document