Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends

Energy ◽  
2007 ◽  
Vol 32 (10) ◽  
pp. 1791-1808 ◽  
Author(s):  
C.D. Rakopoulos ◽  
K.A. Antonopoulos ◽  
D.C. Rakopoulos
Fuel ◽  
2011 ◽  
Vol 90 (5) ◽  
pp. 1855-1867 ◽  
Author(s):  
D.C. Rakopoulos ◽  
C.D. Rakopoulos ◽  
R.G. Papagiannakis ◽  
D.C. Kyritsis

2021 ◽  
Author(s):  
Mohammad Nouri ◽  
Amir Homayoon Meghdadi Isfahani ◽  
Alireza Shirneshan

Abstract This research investigates the effects of the addition of Fe2O3 and Al2O3 nanoparticles (30, 60, and 90 ppm) and Fe2O3-Al2O3 hybrid nanoparticles to pure diesel fuel on the combustion, performance and emission characteristics of a diesel engine. The results indicated that fuel blends improved the combustion (in-cylinder pressure and heat release rate), performance (power, fuel consumption, and thermal and exergy efficiency), and emission characteristics of the engine. The results showed that the peak combustion pressure increased by 4% and the heat release rate was improved by 15% in comparison with pure diesel with the addition of the nanoparticles. Moreover, the rate of pressure rise increased by 18% compared to pure diesel with nanoparticle additives. Based on the results, the effects of Fe2O3 fuel blends on brake power, BTE, and CO emission were more than Al2O3 fuel blends, such that it increased power and thermal efficiency by 7.40 and 14%, respectively, and reduced CO emissions by 21.2%; moreover, the blends with Al2O3 nanoparticle additives in comparison with Fe2O3 nanoparticle blends showed a better performance in reducing BSFC (9%), NOx (23.9%), and SO2 (23.4%) emissions. Overall, the Fe2O3-Al2O3 hybrid fuel blend is the best alternative if the performance and emission characteristics of the engine are both considered.


Fuel ◽  
2008 ◽  
Vol 87 (8-9) ◽  
pp. 1478-1491 ◽  
Author(s):  
D.C. Rakopoulos ◽  
C.D. Rakopoulos ◽  
E.G. Giakoumis ◽  
R.G. Papagiannakis ◽  
D.C. Kyritsis

Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Sign in / Sign up

Export Citation Format

Share Document