wiebe function
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 122957
Author(s):  
Pierpaolo Napolitano ◽  
Irina Jimenez ◽  
Benjamín Pla ◽  
Carlo Beatrice

Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121218
Author(s):  
Shah Saud Alam ◽  
Scott Wilson Rosa ◽  
Christopher Depcik ◽  
Sindhu Preetham Burugupally ◽  
Ethan McDaniel ◽  
...  

2021 ◽  
Author(s):  
Ruinan Yang ◽  
Zhongnan Ran ◽  
Dimitris Assanis

Abstract Wiebe functions, analytical equations that estimate the fuel mass fraction burned (MFB) during combustion, have been effective at describing spark-ignition (SI) engine combustion using gasoline fuels. This study explores if the same methodology can be extended for SI combustion with syngas, a gaseous fuel mixture composed of H2, CO, and CO2, and anode-off gas; the latter is an exhaust gas mixture emitted from the anode of a Solid Oxide Fuel Cell, containing H2, CO, H2O, and CO2. For this study, anode off-gas is treated as a syngas fuel diluted with CO2 and vaporized water. Combustion experiments were run on a single-cylinder, research engine using syngas and anode-off gas as fuels. One single Wiebe function and three double Wiebe functions were fitted and compared with the MFB profile calculated from the experimental data. It was determined that the SI combustion process of both the syngas and the anode-off gas could be estimated using a governing Wiebe function. While the detailed double Wiebe function had the highest accuracy, a reduced double Wiebe function is capable of achieving comparable accuracy. On the other hand, a single Wiebe function is not able to fully capture the combustion process of a SI engine using syngas and anode off-gas.


2021 ◽  
pp. e00900
Author(s):  
Tchato Yotchou Giovani Vidal ◽  
Ngayihi Abbe Claude Valery ◽  
Anye Ngang Emmanuel ◽  
Issondj Banta Junior Nelson ◽  
Ligan Noukpo Moïse ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 505-511
Author(s):  
Jan Famfulik ◽  
Michal Richtar ◽  
Jakub Smiraus ◽  
Petra Muckova ◽  
Branislav Sarkan ◽  
...  

The aim of the article is to present the concept of an indirect diagnostic method using the assessment of the variability of the amount of released heat (mass fraction burn) and the heat release rate. The Wiebe function for the assessment of variability has been used. The Wiebe function parameters from the course of the high-pressure indication in the cylinder of internal combustion engine using linear regression have been calculated. From a sufficiently large number of measured samples, the upper and lower limits of the Wiebe function parameters have been statistically determined. Lower and upper limits characterize variability of the heat release process not only in terms of quantity but also in terms of heat release rate. The assessment of variability is thus more complicated than using one integral indicator, typically the mean value of amount of the released heat. The procedure enabling a more accurate estimation of heat generation beginning has been shown. For the combustion process variability assessment of the engine, statistical test of relative frequencies has been used.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Abstract The conversion of existing heavy-duty diesel engines to lean natural-gas (NG) spark ignition can be achieved by replacing the diesel injector with a spark plug and fumigating the NG into the intake manifold. While the original fast-burn diesel chamber will offset the lower NG flame speed, it will result in a two-stage combustion process (a stage inside and another outside the bowl). However, experimental data at more advanced spark timing, equivalence ratio of 0.8, and mean piston speed of 6.5 m/s suggested an additional combustion stage (i.e., three combustion stages). A three-dimensional (3D) computational fluid dynamics (CFD) simulation and a zero-dimensional triple Wiebe-function model were used to better understand the phenomena. While 78% fuel burned inside the bowl, burning rate reduced significantly when the flame approached the squish entrance and the bowl bottom. Moreover, the triple Wiebe-function indicated that the burn inside the squish was also divided into two separate combustion stages, due to the particularities of in-cylinder flow before and after top dead center. The first stage was fast and took place inside the compression stroke. The second took place in the expansion stroke and produced a short-lived increase in the burning rate, probably due to the increasing squish height during the expansion stroke and the increased combustion-induced turbulence, hence the third heat-release peak. Overall, these findings support the need for further investigations of combustion characteristics in such converted engines, to benefit their efficiency and emissions.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Jinlong Liu ◽  
Chris Ulishney ◽  
Cosmin Emil Dumitrescu

Abstract The Wiebe function is a simple and cost-effective analytical approach to approximate the burn rates in internal combustion (IC) engines. Previous studies indicated that a double-Wiebe function model can better describe the two-stage combustion process inside diesel engines retrofitted to natural gas (NG) spark ignition (SI) compared with a single-Wiebe function. Specifically, the two Wiebe functions are associated with the bowl burn and the squish burn. However, the long tail in the energy release at the end of combustion produces some differences between experiment and model, which can be attributed to the complexity of the late oxidation process inside the post-flame zone and the incomplete combustion of the unburned mixture flowing out from engine crevices. To improve the matching between the model and experimental data, this paper investigated the effect of adding a third Wiebe function just to describe the long tail in the energy release at the end of combustion. The results indicated that such a methodology greatly improved the fitting accuracy in terms of phasing and magnitude of the heat release rate in each combustion stage.


Sign in / Sign up

Export Citation Format

Share Document